Loading…

Proteins conjugated to poly(butyl cyanoacrylate) nanoparticles as potential neuroprotective agents

Poly(butyl cyanoacrylate) (PBCA) nanoparticles (NPs) can penetrate blood-brain barrier providing the means for drug delivery to the central nervous system. Here, we study attachment of superoxide dismutase (SOD) and anti-glutamate N-methyl D-aspartate receptor 1 (NR1) antibody to PBCA NPs with the u...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2011-02, Vol.108 (2), p.243-252
Main Authors: Reukov, Vladimir, Maximov, Victor, Vertegel, Alexey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(butyl cyanoacrylate) (PBCA) nanoparticles (NPs) can penetrate blood-brain barrier providing the means for drug delivery to the central nervous system. Here, we study attachment of superoxide dismutase (SOD) and anti-glutamate N-methyl D-aspartate receptor 1 (NR1) antibody to PBCA NPs with the ultimate goal to design neuroprotective therapeutics for treatment of secondary spinal cord injury. Synthesis of monodispersed, ∼200 nm-diameter PBCA NPs was performed using polymerization at pH 2.0 with Dextran 70,000 as the stabilizer. Sulfo-HSAB spacers were used to covalently attach SOD and NR1 antibodies to the dextran-coated NPs. The prepared protein-NP conjugates possessed SOD activity and were capable of binding to rat cerebellar neurons. Thus, SOD and NR1 antibodies may be simultaneously attached to PBCA NPs while retaining at least a fraction of enzymatic activity and receptor-binding ability. The conjugates showed neuroprotective efficacy in vitro with rat cerebellar cell cultures challenged by superoxide. Biotechnol. Bioeng. 2011;108: 243-252.
ISSN:0006-3592
1097-0290
1097-0290
DOI:10.1002/bit.22958