Loading…
Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect
We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarit...
Saved in:
Published in: | Physical review letters 2011-08, Vol.107 (6), p.066402-066402, Article 066402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23 |
container_end_page | 066402 |
container_issue | 6 |
container_start_page | 066402 |
container_title | Physical review letters |
container_volume | 107 |
creator | Amado, M Malyshev, A V Sedrakyan, A Domínguez-Adame, F |
description | We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index ν = 2.616 ± 0.014. We observe an increase of the critical exponent ν with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems. |
doi_str_mv | 10.1103/physrevlett.107.066402 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888339243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888339243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23</originalsourceid><addsrcrecordid>eNo9UdFu1DAQtBAVPQq_UPmNp1zXsWPHj6iCFukEqILnyGevuYCTXG2ncP2Afncd7uBlVzuamZVmCLlksGYM-NV-d0gRHwLmvGag1iClgPoFWZVDV4ox8ZKsADirNIA6J69T-gkArJbtK3JeMw01F3JFnj7PA8bemkBTnt2BTp7mHdIwFah_NLmfRhpw_JF31MY-_2X2o8M_ZVJDR8y_p_iLDpPDsIj3wWQ0c3XaNEczpn6xSYti8b6fzZjngd6aECh6jza_IWfehIRvT_uCfP_44dv1bbX5cvPp-v2mslzJXHmphHIKNQoH0GinxRY9Sicb1FY6Lrn2QgqlDOfcNlurLDSmdQ3UXpqaX5B3R999nO5nTLkb-mQxBDPiNKeubVvOdS14Ycoj08Yplah9t4_9YOKhY9AtFXRfSwV3-LApFRRMdccKivDy9GLeDuj-y_5lzp8BcRSIpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888339243</pqid></control><display><type>article</type><title>Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Amado, M ; Malyshev, A V ; Sedrakyan, A ; Domínguez-Adame, F</creator><creatorcontrib>Amado, M ; Malyshev, A V ; Sedrakyan, A ; Domínguez-Adame, F</creatorcontrib><description>We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index ν = 2.616 ± 0.014. We observe an increase of the critical exponent ν with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.107.066402</identifier><identifier>PMID: 21902346</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2011-08, Vol.107 (6), p.066402-066402, Article 066402</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23</citedby><cites>FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21902346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amado, M</creatorcontrib><creatorcontrib>Malyshev, A V</creatorcontrib><creatorcontrib>Sedrakyan, A</creatorcontrib><creatorcontrib>Domínguez-Adame, F</creatorcontrib><title>Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index ν = 2.616 ± 0.014. We observe an increase of the critical exponent ν with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9UdFu1DAQtBAVPQq_UPmNp1zXsWPHj6iCFukEqILnyGevuYCTXG2ncP2Afncd7uBlVzuamZVmCLlksGYM-NV-d0gRHwLmvGag1iClgPoFWZVDV4ox8ZKsADirNIA6J69T-gkArJbtK3JeMw01F3JFnj7PA8bemkBTnt2BTp7mHdIwFah_NLmfRhpw_JF31MY-_2X2o8M_ZVJDR8y_p_iLDpPDsIj3wWQ0c3XaNEczpn6xSYti8b6fzZjngd6aECh6jza_IWfehIRvT_uCfP_44dv1bbX5cvPp-v2mslzJXHmphHIKNQoH0GinxRY9Sicb1FY6Lrn2QgqlDOfcNlurLDSmdQ3UXpqaX5B3R999nO5nTLkb-mQxBDPiNKeubVvOdS14Ycoj08Yplah9t4_9YOKhY9AtFXRfSwV3-LApFRRMdccKivDy9GLeDuj-y_5lzp8BcRSIpw</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>Amado, M</creator><creator>Malyshev, A V</creator><creator>Sedrakyan, A</creator><creator>Domínguez-Adame, F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110803</creationdate><title>Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect</title><author>Amado, M ; Malyshev, A V ; Sedrakyan, A ; Domínguez-Adame, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amado, M</creatorcontrib><creatorcontrib>Malyshev, A V</creatorcontrib><creatorcontrib>Sedrakyan, A</creatorcontrib><creatorcontrib>Domínguez-Adame, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amado, M</au><au>Malyshev, A V</au><au>Sedrakyan, A</au><au>Domínguez-Adame, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-08-03</date><risdate>2011</risdate><volume>107</volume><issue>6</issue><spage>066402</spage><epage>066402</epage><pages>066402-066402</pages><artnum>066402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index ν = 2.616 ± 0.014. We observe an increase of the critical exponent ν with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems.</abstract><cop>United States</cop><pmid>21902346</pmid><doi>10.1103/physrevlett.107.066402</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2011-08, Vol.107 (6), p.066402-066402, Article 066402 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_888339243 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20the%20localization%20length%20critical%20index%20in%20a%20network%20model%20of%20plateau-plateau%20transitions%20in%20the%20quantum%20Hall%20effect&rft.jtitle=Physical%20review%20letters&rft.au=Amado,%20M&rft.date=2011-08-03&rft.volume=107&rft.issue=6&rft.spage=066402&rft.epage=066402&rft.pages=066402-066402&rft.artnum=066402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.107.066402&rft_dat=%3Cproquest_cross%3E888339243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-f6747d7e9e4d0059d94befe6d65e9c6d3639f46477a333c5bc7c05a8d502f6a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=888339243&rft_id=info:pmid/21902346&rfr_iscdi=true |