Loading…

Modeling and Control of PV Charger System With SEPIC Converter

The photovoltaic (PV) stand-alone system requires a battery charger for energy storage. This paper presents the modeling and controller design of the PV charger system implemented with the single-ended primary inductance converter (SEPIC). The designed SEPIC employs the peak-current-mode control wit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2009-11, Vol.56 (11), p.4344-4353
Main Authors: Chiang, S.J., Hsin-Jang Shieh, Ming-Chieh Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photovoltaic (PV) stand-alone system requires a battery charger for energy storage. This paper presents the modeling and controller design of the PV charger system implemented with the single-ended primary inductance converter (SEPIC). The designed SEPIC employs the peak-current-mode control with the current command generated from the input PV voltage regulating loop, where the voltage command is determined by both the PV module maximum power point tracking (MPPT) control loop and the battery charging loop. The control objective is to balance the power flow from the PV module to the battery and the load such that the PV power is utilized effectively and the battery is charged with three charging stages. This paper gives a detailed modeling of the SEPIC with the PV module input and peak-current-mode control first. Accordingly, the PV voltage controller, as well as the adaptive MPPT controller, is designed. An 80-W prototype system is built. The effectiveness of the proposed methods is proved with some simulation and experimental results.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2008.2005144