Loading…
Fractional variational calculus for nondifferentiable functions
We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie’s modified Riemann–Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isop...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2011-05, Vol.61 (10), p.3097-3104 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3 |
container_end_page | 3104 |
container_issue | 10 |
container_start_page | 3097 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 61 |
creator | Almeida, Ricardo Torres, Delfim F.M. |
description | We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie’s modified Riemann–Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints. |
doi_str_mv | 10.1016/j.camwa.2011.03.098 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889382132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111002781</els_id><sourcerecordid>889382132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwC7j0xqnFibc2PSCEJgZIk7jAOTKJI2Xq2pG0Q_x7uo8zJ1vy-9jyI8SthEKCLO_XhaXNDxUKpCwAC6j1mZhIXWFelaU-FxPQtc6lUvJSXKW0BoAZKpiIx2Uk24eupSbbUQx06i01dmiGlPkuZm3XuuA9R277QF8NZ35oD1S6FheemsQ3pzoVn8vnj8Vrvnp_eVs8rXKLGvq8thqJUVdOejmjEsfrVTWOsPYgkRzNa3DeldLB3JO22npbsdKKUKFinIq7495t7L4HTr3ZhGS5aajlbkhG6xq1kmN4KvCYtLFLKbI32xg2FH-NBLO3ZdbmYMvsbRlAM9oaqYcjxeMTu8DRJBu4texCZNsb14V_-T9VAXSj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889382132</pqid></control><display><type>article</type><title>Fractional variational calculus for nondifferentiable functions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Almeida, Ricardo ; Torres, Delfim F.M.</creator><creatorcontrib>Almeida, Ricardo ; Torres, Delfim F.M.</creatorcontrib><description>We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie’s modified Riemann–Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.03.098</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Calculus of variations ; Derivatives ; Fractional calculus ; Free boundaries ; Holonomic constraints ; Isoperimetric problems ; Jumarie’s modified Riemann–Liouville derivative ; Mathematical analysis ; Mathematical models ; Natural boundary conditions ; Optimization</subject><ispartof>Computers & mathematics with applications (1987), 2011-05, Vol.61 (10), p.3097-3104</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3</citedby><cites>FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Almeida, Ricardo</creatorcontrib><creatorcontrib>Torres, Delfim F.M.</creatorcontrib><title>Fractional variational calculus for nondifferentiable functions</title><title>Computers & mathematics with applications (1987)</title><description>We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie’s modified Riemann–Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints.</description><subject>Calculus of variations</subject><subject>Derivatives</subject><subject>Fractional calculus</subject><subject>Free boundaries</subject><subject>Holonomic constraints</subject><subject>Isoperimetric problems</subject><subject>Jumarie’s modified Riemann–Liouville derivative</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Natural boundary conditions</subject><subject>Optimization</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwC7j0xqnFibc2PSCEJgZIk7jAOTKJI2Xq2pG0Q_x7uo8zJ1vy-9jyI8SthEKCLO_XhaXNDxUKpCwAC6j1mZhIXWFelaU-FxPQtc6lUvJSXKW0BoAZKpiIx2Uk24eupSbbUQx06i01dmiGlPkuZm3XuuA9R277QF8NZ35oD1S6FheemsQ3pzoVn8vnj8Vrvnp_eVs8rXKLGvq8thqJUVdOejmjEsfrVTWOsPYgkRzNa3DeldLB3JO22npbsdKKUKFinIq7495t7L4HTr3ZhGS5aajlbkhG6xq1kmN4KvCYtLFLKbI32xg2FH-NBLO3ZdbmYMvsbRlAM9oaqYcjxeMTu8DRJBu4texCZNsb14V_-T9VAXSj</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Almeida, Ricardo</creator><creator>Torres, Delfim F.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Fractional variational calculus for nondifferentiable functions</title><author>Almeida, Ricardo ; Torres, Delfim F.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of variations</topic><topic>Derivatives</topic><topic>Fractional calculus</topic><topic>Free boundaries</topic><topic>Holonomic constraints</topic><topic>Isoperimetric problems</topic><topic>Jumarie’s modified Riemann–Liouville derivative</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Natural boundary conditions</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Ricardo</creatorcontrib><creatorcontrib>Torres, Delfim F.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Ricardo</au><au>Torres, Delfim F.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional variational calculus for nondifferentiable functions</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>61</volume><issue>10</issue><spage>3097</spage><epage>3104</epage><pages>3097-3104</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie’s modified Riemann–Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.03.098</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2011-05, Vol.61 (10), p.3097-3104 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_889382132 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Calculus of variations Derivatives Fractional calculus Free boundaries Holonomic constraints Isoperimetric problems Jumarie’s modified Riemann–Liouville derivative Mathematical analysis Mathematical models Natural boundary conditions Optimization |
title | Fractional variational calculus for nondifferentiable functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20variational%20calculus%20for%20nondifferentiable%20functions&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Almeida,%20Ricardo&rft.date=2011-05-01&rft.volume=61&rft.issue=10&rft.spage=3097&rft.epage=3104&rft.pages=3097-3104&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.03.098&rft_dat=%3Cproquest_cross%3E889382132%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-9c83ae387d1f14a634327738039f013ada590dfd61d05fa8c8cfc7e282a3232e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889382132&rft_id=info:pmid/&rfr_iscdi=true |