Loading…
Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties
Novel thermosensitive macroporous cryogels, based on various hydrophobically modified high molar mass (HMM) polyglycidol precursors, were synthesized using the UV-irradiation technique. The method involved the preparation of a semi-dilute aqueous solution of thermosensitive poly(glycidol-co-ethyl gl...
Saved in:
Published in: | European polymer journal 2011-05, Vol.47 (5), p.981-988 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel thermosensitive macroporous cryogels, based on various hydrophobically modified high molar mass (HMM) polyglycidol precursors, were synthesized using the UV-irradiation technique. The method involved the preparation of a semi-dilute aqueous solution of thermosensitive poly(glycidol-co-ethyl glycidyl carbamate) (PGL-Et), subsequent freezing at a moderately negative temperature (−20°C) and irradiation with UV light. All PGL-Et cryogels had a spongy-like structure of smooth polymer walls surrounding interconnected macroscopic pores. Consequently, the cryogels exhibited temperature triggered, reversible, ultra-rapid volume phase transition (VPT) from a swollen to deswollen state within 20–25s. The VPT temperature of the PGL-Et cryogels was strongly dependent on the degree of modification of the PGL precursors and it decreased proportionally with increased ethyl glycidyl carbamate content. The PGL-Et cryogels were used as a scaffold for skin cell (fibroblast) adhesion. Adhesion and proliferation tests indicated that the gels were good supports for cell cultivation. |
---|---|
ISSN: | 0014-3057 1873-1945 |
DOI: | 10.1016/j.eurpolymj.2011.03.010 |