Loading…

On certain analytic functions with bounded radius rotation

Certain classes R k ( μ , α ) ; k ≥ 2 , μ > − 1 , 0 ≤ α < 1 of analytic functions are defined in the unit disc using convolution technique. It is shown that functions in R k ( μ , α ) are of bounded radius rotation. It is proved that R k ( μ , α ) and some other newly introduced related classe...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2011-05, Vol.61 (10), p.2987-2993
Main Authors: Noor, Khalida Inayat, Noor, Muhammad Aslam, Al-Said, Eisa A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13
cites cdi_FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13
container_end_page 2993
container_issue 10
container_start_page 2987
container_title Computers & mathematics with applications (1987)
container_volume 61
creator Noor, Khalida Inayat
Noor, Muhammad Aslam
Al-Said, Eisa A.
description Certain classes R k ( μ , α ) ; k ≥ 2 , μ > − 1 , 0 ≤ α < 1 of analytic functions are defined in the unit disc using convolution technique. It is shown that functions in R k ( μ , α ) are of bounded radius rotation. It is proved that R k ( μ , α ) and some other newly introduced related classes are invariant under the generalized Bernardi integral operator. The converse case as a radius problem is also considered. Theorems proved in this paper are best possible in some sense.
doi_str_mv 10.1016/j.camwa.2011.03.084
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889385661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211100263X</els_id><sourcerecordid>889385661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1iyMSU827HjIDGgii-pUheYLcd-Ea5Sp9gOFf-eljIz3eHd86R7CLmmUFGg8nZdWbPZmYoBpRXwClR9QmZUNbxspFSnZAaqVSVljJ6Ti5TWAFBzBjNytwqFxZiND4UJZvjO3hb9FGz2Y0jFzuePohun4NAV0Tg_pSKO2Ryul-SsN0PCq7-ck_enx7fFS7lcPb8uHpal5VzkkjWtsq1kRlDrUHHatTWgE9DUKDh0vRSMSTRCUINMMuxAdL3tHOd9WzvK5-Tm-Hcbx88JU9YbnywOgwk4Tkkr1XIlpDw0-bFp45hSxF5vo9-Y-K0p6IMovda_ovRBlAau96L21P2Rwv2IL49RJ-sxWHQ-os3ajf5f_gcUonJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889385661</pqid></control><display><type>article</type><title>On certain analytic functions with bounded radius rotation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Noor, Khalida Inayat ; Noor, Muhammad Aslam ; Al-Said, Eisa A.</creator><creatorcontrib>Noor, Khalida Inayat ; Noor, Muhammad Aslam ; Al-Said, Eisa A.</creatorcontrib><description>Certain classes R k ( μ , α ) ; k ≥ 2 , μ &gt; − 1 , 0 ≤ α &lt; 1 of analytic functions are defined in the unit disc using convolution technique. It is shown that functions in R k ( μ , α ) are of bounded radius rotation. It is proved that R k ( μ , α ) and some other newly introduced related classes are invariant under the generalized Bernardi integral operator. The converse case as a radius problem is also considered. Theorems proved in this paper are best possible in some sense.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.03.084</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analytic functions ; Bounded radius rotation ; Convolution ; Discs ; Disks ; Functions with positive real part ; Integrals ; Invariants ; Linear operator ; Mathematical analysis ; Mathematical models ; Operators ; Ruscheweyh derivative ; Starlike</subject><ispartof>Computers &amp; mathematics with applications (1987), 2011-05, Vol.61 (10), p.2987-2993</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13</citedby><cites>FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Noor, Khalida Inayat</creatorcontrib><creatorcontrib>Noor, Muhammad Aslam</creatorcontrib><creatorcontrib>Al-Said, Eisa A.</creatorcontrib><title>On certain analytic functions with bounded radius rotation</title><title>Computers &amp; mathematics with applications (1987)</title><description>Certain classes R k ( μ , α ) ; k ≥ 2 , μ &gt; − 1 , 0 ≤ α &lt; 1 of analytic functions are defined in the unit disc using convolution technique. It is shown that functions in R k ( μ , α ) are of bounded radius rotation. It is proved that R k ( μ , α ) and some other newly introduced related classes are invariant under the generalized Bernardi integral operator. The converse case as a radius problem is also considered. Theorems proved in this paper are best possible in some sense.</description><subject>Analytic functions</subject><subject>Bounded radius rotation</subject><subject>Convolution</subject><subject>Discs</subject><subject>Disks</subject><subject>Functions with positive real part</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Linear operator</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Ruscheweyh derivative</subject><subject>Starlike</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1iyMSU827HjIDGgii-pUheYLcd-Ea5Sp9gOFf-eljIz3eHd86R7CLmmUFGg8nZdWbPZmYoBpRXwClR9QmZUNbxspFSnZAaqVSVljJ6Ti5TWAFBzBjNytwqFxZiND4UJZvjO3hb9FGz2Y0jFzuePohun4NAV0Tg_pSKO2Ryul-SsN0PCq7-ck_enx7fFS7lcPb8uHpal5VzkkjWtsq1kRlDrUHHatTWgE9DUKDh0vRSMSTRCUINMMuxAdL3tHOd9WzvK5-Tm-Hcbx88JU9YbnywOgwk4Tkkr1XIlpDw0-bFp45hSxF5vo9-Y-K0p6IMovda_ovRBlAau96L21P2Rwv2IL49RJ-sxWHQ-os3ajf5f_gcUonJR</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Noor, Khalida Inayat</creator><creator>Noor, Muhammad Aslam</creator><creator>Al-Said, Eisa A.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>On certain analytic functions with bounded radius rotation</title><author>Noor, Khalida Inayat ; Noor, Muhammad Aslam ; Al-Said, Eisa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytic functions</topic><topic>Bounded radius rotation</topic><topic>Convolution</topic><topic>Discs</topic><topic>Disks</topic><topic>Functions with positive real part</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Linear operator</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Ruscheweyh derivative</topic><topic>Starlike</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor, Khalida Inayat</creatorcontrib><creatorcontrib>Noor, Muhammad Aslam</creatorcontrib><creatorcontrib>Al-Said, Eisa A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor, Khalida Inayat</au><au>Noor, Muhammad Aslam</au><au>Al-Said, Eisa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On certain analytic functions with bounded radius rotation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>61</volume><issue>10</issue><spage>2987</spage><epage>2993</epage><pages>2987-2993</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Certain classes R k ( μ , α ) ; k ≥ 2 , μ &gt; − 1 , 0 ≤ α &lt; 1 of analytic functions are defined in the unit disc using convolution technique. It is shown that functions in R k ( μ , α ) are of bounded radius rotation. It is proved that R k ( μ , α ) and some other newly introduced related classes are invariant under the generalized Bernardi integral operator. The converse case as a radius problem is also considered. Theorems proved in this paper are best possible in some sense.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.03.084</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2011-05, Vol.61 (10), p.2987-2993
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_889385661
source ScienceDirect Freedom Collection 2022-2024
subjects Analytic functions
Bounded radius rotation
Convolution
Discs
Disks
Functions with positive real part
Integrals
Invariants
Linear operator
Mathematical analysis
Mathematical models
Operators
Ruscheweyh derivative
Starlike
title On certain analytic functions with bounded radius rotation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20certain%20analytic%20functions%20with%20bounded%20radius%20rotation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Noor,%20Khalida%20Inayat&rft.date=2011-05-01&rft.volume=61&rft.issue=10&rft.spage=2987&rft.epage=2993&rft.pages=2987-2993&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.03.084&rft_dat=%3Cproquest_cross%3E889385661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-2798c962a51cde831b940ed5074e530bf65226ea551ae262eb05bfcbd33f94d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889385661&rft_id=info:pmid/&rfr_iscdi=true