Loading…

Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method

This paper presents a study on optimization of a fixed bed tri-reformer reactor (TR). This reactor has been used instead of conventional steam reformer (CSR) and auto thermal reformer (CAR). A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enha...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy 2011-08, Vol.88 (8), p.2691-2701
Main Authors: Arab Aboosadi, Z., Jahanmiri, A.H., Rahimpour, M.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a study on optimization of a fixed bed tri-reformer reactor (TR). This reactor has been used instead of conventional steam reformer (CSR) and auto thermal reformer (CAR). A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enhancement of methane conversion, hydrogen production and desired H2/CO ratio as a synthesis gas for methanol production. A mathematical heterogeneous model has been used to simulate the reactor. The process performance under steady state conditions was analyzed with respect to key operational parameters (inlet temperature, O2/CH4, CO2/CH4 and steam/CH4 ratios). The influence of these parameters on gas temperature, methane conversion, hydrogen production and H2/CO ratio was investigated. Model validation was carried out by comparison of the reforming model results with industrial data of CSR. Differential evolution (DE) method was applied as a powerful method for optimization. Optimum feed temperature and reactant ratios (CH4/CO2/H2O/O2) are 1100K and 1/1.3/2.46/0.47 respectively. The optimized TR has enhanced methane conversion by 3.8% relative to industrial reformers in a single reactor. Methane conversion, hydrogen yield and H2/CO ratio in optimized TR are 97.9%, 1.84 and 1.7 respectively. The optimization results of tri-reformer were compared with the corresponding predictions from process simulation software operated at the same feed conditions.
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2011.02.017