Loading…
Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer
CFD predictions of laminar mixed convection of Al 2O 3–water nanofluids by single-phase and three different two-phase models (volume of fluid, mixture, Eulerian) are compared. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for laminar mixed convecti...
Saved in:
Published in: | International journal of thermal sciences 2011-08, Vol.50 (8), p.1343-1354 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CFD predictions of laminar mixed convection of Al
2O
3–water nanofluids by single-phase and three different two-phase models (volume of fluid, mixture, Eulerian) are compared. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for laminar mixed convection in a horizontal tube with uniform heat flux are solved numerically using the finite volume approach. It is found that single-phase and two-phase models predict almost identical hydrodynamic fields but very different thermal ones. The predictions by the three two-phase models are essentially the same. For the problem under consideration the two-phase models give closer predictions of the convective heat transfer coefficient to the experimental data than the single-phase model; nevertheless, the two-phase models over-predict the enhancement of the convective heat transfer coefficient resulting from the increase of the alumina volume fraction. The results are calculated for two Reynolds numbers (1050 and 1600) and three nanoparticle volume concentrations ( |
---|---|
ISSN: | 1290-0729 1778-4166 |
DOI: | 10.1016/j.ijthermalsci.2011.03.008 |