Loading…

Numerical analysis by FEM and analytical study of the dynamic thermal behavior of hollow bricks with different cavity concentration

This paper presents the investigation results on the influence of the cavity concentration in hollow bricks on static and dynamic thermal parameters: a time lag, a decrement factor, an equivalent thermal diffusivity (ETD) and an equivalent thermal conductivity (ETC). The dynamic thermal behavior of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermal sciences 2011-08, Vol.50 (8), p.1543-1553
Main Authors: Arendt, K., Krzaczek, M., Florczuk, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the investigation results on the influence of the cavity concentration in hollow bricks on static and dynamic thermal parameters: a time lag, a decrement factor, an equivalent thermal diffusivity (ETD) and an equivalent thermal conductivity (ETC). The dynamic thermal behavior of hollow bricks is studied with an optimized cavity shape to reduce the intensity of radiation and convective heat exchange. The thermal performance assessment is based on static and dynamic thermal behavior calculated numerically. A semi-analytical method is proposed to enable calculations of thermal parameters of hollow bricks. The optimum thermal parameters of hollow bricks made from low-thermal-conductivity materials are obtained by ratios of a total cavity area to a gross brick area in the range of 30–45%. As a result, hollow bricks made from materials with relatively high thermal conductivity required a cavity concentration of 45–65% which was impossible to obtain technologically.
ISSN:1290-0729
1778-4166
DOI:10.1016/j.ijthermalsci.2011.02.027