Loading…
Numerical analysis by FEM and analytical study of the dynamic thermal behavior of hollow bricks with different cavity concentration
This paper presents the investigation results on the influence of the cavity concentration in hollow bricks on static and dynamic thermal parameters: a time lag, a decrement factor, an equivalent thermal diffusivity (ETD) and an equivalent thermal conductivity (ETC). The dynamic thermal behavior of...
Saved in:
Published in: | International journal of thermal sciences 2011-08, Vol.50 (8), p.1543-1553 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the investigation results on the influence of the cavity concentration in hollow bricks on static and dynamic thermal parameters: a time lag, a decrement factor, an equivalent thermal diffusivity (ETD) and an equivalent thermal conductivity (ETC). The dynamic thermal behavior of hollow bricks is studied with an optimized cavity shape to reduce the intensity of radiation and convective heat exchange. The thermal performance assessment is based on static and dynamic thermal behavior calculated numerically. A semi-analytical method is proposed to enable calculations of thermal parameters of hollow bricks. The optimum thermal parameters of hollow bricks made from low-thermal-conductivity materials are obtained by ratios of a total cavity area to a gross brick area in the range of 30–45%. As a result, hollow bricks made from materials with relatively high thermal conductivity required a cavity concentration of 45–65% which was impossible to obtain technologically. |
---|---|
ISSN: | 1290-0729 1778-4166 |
DOI: | 10.1016/j.ijthermalsci.2011.02.027 |