Loading…
Dynamical behavior of a mobile system with two degrees of freedom near the resonance
The design of mobile robots that can move without wheels or legs is an important engineering and technological problem.Self-propelling mechanisms consisting of a body that has contact with a rough surface and moveable internal masses are considered.Mathematical models of such systems are presented i...
Saved in:
Published in: | Acta mechanica Sinica 2011-02, Vol.27 (1), p.7-17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of mobile robots that can move without wheels or legs is an important engineering and technological problem.Self-propelling mechanisms consisting of a body that has contact with a rough surface and moveable internal masses are considered.Mathematical models of such systems are presented in this paper.First,a model of a vibration driven robot that moves along a rough horizontal plane with isotropic dry friction is studied.It is shown that by changing the off-resonance frequency detuning in sign,one can control the direction of motion of the system.In addition,a locomotion system which moves in an environment with anisotropic viscous friction is considered.For all models,the method of averaging to obtain an algebraic equation for the steady-state"average"velocity of the system is used. Prototypes were constructed to compare the theoretical results with experimental ones. |
---|---|
ISSN: | 0567-7718 1614-3116 |
DOI: | 10.1007/s10409-011-0403-6 |