Loading…
Detection of dominant flow and abnormal events in surveillance video
We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without indi...
Saved in:
Published in: | Optical Engineering 2011-02, Vol.50 (2), p.027202-027202 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683 |
---|---|
cites | cdi_FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683 |
container_end_page | 027202 |
container_issue | 2 |
container_start_page | 027202 |
container_title | Optical Engineering |
container_volume | 50 |
creator | Kwak, Sooyeong Byun, Hyeran |
description | We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction. |
doi_str_mv | 10.1117/1.3542038 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889406244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889406244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKsH_0Fu4mHrTJLNZo-lrVUoVETPS7pJILKb1M224r93-4EDw8zh4eXlIeQeYYKIxRNOeC4YcHVBRphLyBgHfklGACVmnCl5TW5S-gIAVio1IvO57W3d-xhodNTE1gcdeuqa-EN1MFRvQuxa3VC7t6FP1Aeadt3e-qbRobZ0742Nt-TK6SbZu_Mdk8_nxcfsJVutl6-z6SqrOYg-c-AUoNsUiGIjjANlrZHaKFbK3Gk0UNqylELXtStyhNw5aYRGKYUAlIqPycMpd9vF751NfdX6VNtDFRt3qVKqFCCZEAP5eCLrLqbUWVdtO9_q7rdCqA6iKqzOogaWndi09fafW78tltP3wRPkcBwGrBj2-CP_A7jsZ-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889406244</pqid></control><display><type>article</type><title>Detection of dominant flow and abnormal events in surveillance video</title><source>SPIE Digital Library</source><creator>Kwak, Sooyeong ; Byun, Hyeran</creator><creatorcontrib>Kwak, Sooyeong ; Byun, Hyeran</creatorcontrib><description>We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.</description><identifier>ISSN: 0091-3286</identifier><identifier>EISSN: 1560-2303</identifier><identifier>DOI: 10.1117/1.3542038</identifier><identifier>CODEN: OPEGAR</identifier><language>eng</language><subject>Algorithms ; Allocations ; Dirichlet problem ; Learning ; Real time ; Surveillance ; Tracking</subject><ispartof>Optical Engineering, 2011-02, Vol.50 (2), p.027202-027202</ispartof><rights>2011 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683</citedby><cites>FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.3542038$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://dx.doi.org/10.1117/1.3542038$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,776,780,18944,27901,27902,55361,55362</link.rule.ids></links><search><creatorcontrib>Kwak, Sooyeong</creatorcontrib><creatorcontrib>Byun, Hyeran</creatorcontrib><title>Detection of dominant flow and abnormal events in surveillance video</title><title>Optical Engineering</title><description>We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Dirichlet problem</subject><subject>Learning</subject><subject>Real time</subject><subject>Surveillance</subject><subject>Tracking</subject><issn>0091-3286</issn><issn>1560-2303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKsH_0Fu4mHrTJLNZo-lrVUoVETPS7pJILKb1M224r93-4EDw8zh4eXlIeQeYYKIxRNOeC4YcHVBRphLyBgHfklGACVmnCl5TW5S-gIAVio1IvO57W3d-xhodNTE1gcdeuqa-EN1MFRvQuxa3VC7t6FP1Aeadt3e-qbRobZ0742Nt-TK6SbZu_Mdk8_nxcfsJVutl6-z6SqrOYg-c-AUoNsUiGIjjANlrZHaKFbK3Gk0UNqylELXtStyhNw5aYRGKYUAlIqPycMpd9vF751NfdX6VNtDFRt3qVKqFCCZEAP5eCLrLqbUWVdtO9_q7rdCqA6iKqzOogaWndi09fafW78tltP3wRPkcBwGrBj2-CP_A7jsZ-s</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Kwak, Sooyeong</creator><creator>Byun, Hyeran</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Detection of dominant flow and abnormal events in surveillance video</title><author>Kwak, Sooyeong ; Byun, Hyeran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Dirichlet problem</topic><topic>Learning</topic><topic>Real time</topic><topic>Surveillance</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Sooyeong</creatorcontrib><creatorcontrib>Byun, Hyeran</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Sooyeong</au><au>Byun, Hyeran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of dominant flow and abnormal events in surveillance video</atitle><jtitle>Optical Engineering</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>50</volume><issue>2</issue><spage>027202</spage><epage>027202</epage><pages>027202-027202</pages><issn>0091-3286</issn><eissn>1560-2303</eissn><coden>OPEGAR</coden><abstract>We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.</abstract><doi>10.1117/1.3542038</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-3286 |
ispartof | Optical Engineering, 2011-02, Vol.50 (2), p.027202-027202 |
issn | 0091-3286 1560-2303 |
language | eng |
recordid | cdi_proquest_miscellaneous_889406244 |
source | SPIE Digital Library |
subjects | Algorithms Allocations Dirichlet problem Learning Real time Surveillance Tracking |
title | Detection of dominant flow and abnormal events in surveillance video |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20dominant%20flow%20and%20abnormal%20events%20in%20surveillance%20video&rft.jtitle=Optical%20Engineering&rft.au=Kwak,%20Sooyeong&rft.date=2011-02-01&rft.volume=50&rft.issue=2&rft.spage=027202&rft.epage=027202&rft.pages=027202-027202&rft.issn=0091-3286&rft.eissn=1560-2303&rft.coden=OPEGAR&rft_id=info:doi/10.1117/1.3542038&rft_dat=%3Cproquest_cross%3E889406244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-f0f801fb7114b4df08eed6ad82965fa1d09e9964accf75105ff6d4a1664401683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889406244&rft_id=info:pmid/&rfr_iscdi=true |