Loading…
Experimental implementation of an all-optical OFDM system based on time lens
A real time all-optical orthogonal frequency division multiplexing (OOFDM) system based on two time lenses is experimentally demonstrated. At the transmitter, groups of initial optical pulses are transformed into OOFDM symbols by a continuous inverse Fourier transform (IFT) device, which consists of...
Saved in:
Published in: | Optics communications 2011-08, Vol.284 (16), p.3983-3989 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73 |
container_end_page | 3989 |
container_issue | 16 |
container_start_page | 3983 |
container_title | Optics communications |
container_volume | 284 |
creator | Li, Yuan Li, Wei Ye, Fei Wang, Chuanbiao Liu, Deming Huang, Benxiong Yang, Kecheng |
description | A real time all-optical orthogonal frequency division multiplexing (OOFDM) system based on two time lenses is experimentally demonstrated. At the transmitter, groups of initial optical pulses are transformed into OOFDM symbols by a continuous inverse Fourier transform (IFT) device, which consists of the first a quadratic phase modulator and two high dispersive elements. After transmission, a continuous Fourier transform (FT) device, consisting of another quadratic phase modulator and two high dispersive elements, rebuilds the initial optical pulses at the receiver. The electrical sinusoidal waveform employed in the FT module at the receiver is obtained directly from the transmitter with certain phase shift. In the system, the guard interval is necessary for each OOFDM symbol to ensure the initial pulses are operated FT/IFT under a parabolic waveform driving and to have more Fourier transformation time window. Experiment results show that 8
×
2.5
Gb/s signals successfully transmit through 200-km-G.655 fibers without any dispersion compensation, with the BER being 10
−
12
. |
doi_str_mv | 10.1016/j.optcom.2011.04.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889410488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401811004020</els_id><sourcerecordid>889410488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxi8MSWcEzd1FyRUWkAK6gKzZTsXyZUTh9hF9N_jEmamu9N970nvEXLLIGfAqvt97odofJcXwFgOPIeCnZEZE8syg5LBOZkBlJBxYOKSXIWwBwDGSzEj9eZ7wNF22EflqO0Gh797tL6nvqWqp8q5LPlbk4Dd9umNhmOI2FGtAjY0YTHJqcM-XJOLVrmAN39zTj62m_f1S1bvnl_Xj3VmOPCYNcCxKqBqGsYKLviK63SVVaG5NlXLtEmfRutWCLEoVgtlAJReYqKrVptlOSd3k-8w-s8Dhig7Gww6p3r0hyCFWHEGXIhE8ok0ow9hxFYOKawaj5KBPHUn93LqTp66k8Bl6i7JHiYZphRfFkcZjMXeYGNHNFE23v5v8AOYTnmt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889410488</pqid></control><display><type>article</type><title>Experimental implementation of an all-optical OFDM system based on time lens</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Yuan ; Li, Wei ; Ye, Fei ; Wang, Chuanbiao ; Liu, Deming ; Huang, Benxiong ; Yang, Kecheng</creator><creatorcontrib>Li, Yuan ; Li, Wei ; Ye, Fei ; Wang, Chuanbiao ; Liu, Deming ; Huang, Benxiong ; Yang, Kecheng</creatorcontrib><description>A real time all-optical orthogonal frequency division multiplexing (OOFDM) system based on two time lenses is experimentally demonstrated. At the transmitter, groups of initial optical pulses are transformed into OOFDM symbols by a continuous inverse Fourier transform (IFT) device, which consists of the first a quadratic phase modulator and two high dispersive elements. After transmission, a continuous Fourier transform (FT) device, consisting of another quadratic phase modulator and two high dispersive elements, rebuilds the initial optical pulses at the receiver. The electrical sinusoidal waveform employed in the FT module at the receiver is obtained directly from the transmitter with certain phase shift. In the system, the guard interval is necessary for each OOFDM symbol to ensure the initial pulses are operated FT/IFT under a parabolic waveform driving and to have more Fourier transformation time window. Experiment results show that 8
×
2.5
Gb/s signals successfully transmit through 200-km-G.655 fibers without any dispersion compensation, with the BER being 10
−
12
.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2011.04.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Devices ; Fourier transforms ; Guard interval ; Lenses ; Modulators ; Optical pulses ; Orthogonal Frequency Division Multiplexing ; Quadratic phase modulator ; Symbols ; Time lens ; Transmitters ; Waveforms</subject><ispartof>Optics communications, 2011-08, Vol.284 (16), p.3983-3989</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73</citedby><cites>FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Ye, Fei</creatorcontrib><creatorcontrib>Wang, Chuanbiao</creatorcontrib><creatorcontrib>Liu, Deming</creatorcontrib><creatorcontrib>Huang, Benxiong</creatorcontrib><creatorcontrib>Yang, Kecheng</creatorcontrib><title>Experimental implementation of an all-optical OFDM system based on time lens</title><title>Optics communications</title><description>A real time all-optical orthogonal frequency division multiplexing (OOFDM) system based on two time lenses is experimentally demonstrated. At the transmitter, groups of initial optical pulses are transformed into OOFDM symbols by a continuous inverse Fourier transform (IFT) device, which consists of the first a quadratic phase modulator and two high dispersive elements. After transmission, a continuous Fourier transform (FT) device, consisting of another quadratic phase modulator and two high dispersive elements, rebuilds the initial optical pulses at the receiver. The electrical sinusoidal waveform employed in the FT module at the receiver is obtained directly from the transmitter with certain phase shift. In the system, the guard interval is necessary for each OOFDM symbol to ensure the initial pulses are operated FT/IFT under a parabolic waveform driving and to have more Fourier transformation time window. Experiment results show that 8
×
2.5
Gb/s signals successfully transmit through 200-km-G.655 fibers without any dispersion compensation, with the BER being 10
−
12
.</description><subject>Devices</subject><subject>Fourier transforms</subject><subject>Guard interval</subject><subject>Lenses</subject><subject>Modulators</subject><subject>Optical pulses</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Quadratic phase modulator</subject><subject>Symbols</subject><subject>Time lens</subject><subject>Transmitters</subject><subject>Waveforms</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxi8MSWcEzd1FyRUWkAK6gKzZTsXyZUTh9hF9N_jEmamu9N970nvEXLLIGfAqvt97odofJcXwFgOPIeCnZEZE8syg5LBOZkBlJBxYOKSXIWwBwDGSzEj9eZ7wNF22EflqO0Gh797tL6nvqWqp8q5LPlbk4Dd9umNhmOI2FGtAjY0YTHJqcM-XJOLVrmAN39zTj62m_f1S1bvnl_Xj3VmOPCYNcCxKqBqGsYKLviK63SVVaG5NlXLtEmfRutWCLEoVgtlAJReYqKrVptlOSd3k-8w-s8Dhig7Gww6p3r0hyCFWHEGXIhE8ok0ow9hxFYOKawaj5KBPHUn93LqTp66k8Bl6i7JHiYZphRfFkcZjMXeYGNHNFE23v5v8AOYTnmt</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Li, Yuan</creator><creator>Li, Wei</creator><creator>Ye, Fei</creator><creator>Wang, Chuanbiao</creator><creator>Liu, Deming</creator><creator>Huang, Benxiong</creator><creator>Yang, Kecheng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>Experimental implementation of an all-optical OFDM system based on time lens</title><author>Li, Yuan ; Li, Wei ; Ye, Fei ; Wang, Chuanbiao ; Liu, Deming ; Huang, Benxiong ; Yang, Kecheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Devices</topic><topic>Fourier transforms</topic><topic>Guard interval</topic><topic>Lenses</topic><topic>Modulators</topic><topic>Optical pulses</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Quadratic phase modulator</topic><topic>Symbols</topic><topic>Time lens</topic><topic>Transmitters</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Ye, Fei</creatorcontrib><creatorcontrib>Wang, Chuanbiao</creatorcontrib><creatorcontrib>Liu, Deming</creatorcontrib><creatorcontrib>Huang, Benxiong</creatorcontrib><creatorcontrib>Yang, Kecheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuan</au><au>Li, Wei</au><au>Ye, Fei</au><au>Wang, Chuanbiao</au><au>Liu, Deming</au><au>Huang, Benxiong</au><au>Yang, Kecheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental implementation of an all-optical OFDM system based on time lens</atitle><jtitle>Optics communications</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>284</volume><issue>16</issue><spage>3983</spage><epage>3989</epage><pages>3983-3989</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>A real time all-optical orthogonal frequency division multiplexing (OOFDM) system based on two time lenses is experimentally demonstrated. At the transmitter, groups of initial optical pulses are transformed into OOFDM symbols by a continuous inverse Fourier transform (IFT) device, which consists of the first a quadratic phase modulator and two high dispersive elements. After transmission, a continuous Fourier transform (FT) device, consisting of another quadratic phase modulator and two high dispersive elements, rebuilds the initial optical pulses at the receiver. The electrical sinusoidal waveform employed in the FT module at the receiver is obtained directly from the transmitter with certain phase shift. In the system, the guard interval is necessary for each OOFDM symbol to ensure the initial pulses are operated FT/IFT under a parabolic waveform driving and to have more Fourier transformation time window. Experiment results show that 8
×
2.5
Gb/s signals successfully transmit through 200-km-G.655 fibers without any dispersion compensation, with the BER being 10
−
12
.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2011.04.021</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4018 |
ispartof | Optics communications, 2011-08, Vol.284 (16), p.3983-3989 |
issn | 0030-4018 1873-0310 |
language | eng |
recordid | cdi_proquest_miscellaneous_889410488 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Devices Fourier transforms Guard interval Lenses Modulators Optical pulses Orthogonal Frequency Division Multiplexing Quadratic phase modulator Symbols Time lens Transmitters Waveforms |
title | Experimental implementation of an all-optical OFDM system based on time lens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20implementation%20of%20an%20all-optical%20OFDM%20system%20based%20on%20time%20lens&rft.jtitle=Optics%20communications&rft.au=Li,%20Yuan&rft.date=2011-08-01&rft.volume=284&rft.issue=16&rft.spage=3983&rft.epage=3989&rft.pages=3983-3989&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2011.04.021&rft_dat=%3Cproquest_cross%3E889410488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-d04e6206dd11248494b206362b4bc6f1bcdd1dbbf8885295ac00ab7e1126fbc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889410488&rft_id=info:pmid/&rfr_iscdi=true |