Loading…

Choroidal laser Doppler flowmeter with enhanced sensitivity based on a scattering plate

A portable choroidal laser Doppler flowmeter (LDF) with enhanced sensitivity based on a scattering plate is developed. The portable LDF is weighted 2 kg operated at center wavelength of 780 nm, leading to a better penetration into the eye fundus in contrast to the previous LDF operated at center wav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Biomedical Optics 2011-04, Vol.16 (4), p.047004-047004
Main Authors: Wang, Chuan, Ding, Zhihua, Wu, Tong, Chen, Minghui, Geiser, Martial H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A portable choroidal laser Doppler flowmeter (LDF) with enhanced sensitivity based on a scattering plate is developed. The portable LDF is weighted 2 kg operated at center wavelength of 780 nm, leading to a better penetration into the eye fundus in contrast to the previous LDF operated at center wavelength of 670 nm. Enhancement of number of detected photons that undergo Doppler scattering and improved measured speed of choroidal blood flow are achieved with the use of a scattering plate positioned in front of the eye. The mechanism of detection and sensitivity enhancement is theoretically analyzed. Evaluation of system performance is done by measurements on ten volunteers. The results demonstrate that an increased percentage of backscattering light at high Doppler shift frequency is collected due to utilization of the scattering plate. However, this kind of light detection influences spatial resolution of the system and decreases the total signal measured. The proposed method for detection and sensitivity enhancement might be useful in a case where the perception of very slight alternation of blood flow is pursued and the spatial resolution is not as critical as that in a choroidal vascular bed.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.3565438