Loading…

Gossip-based ad hoc routing

Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations of flooding, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2006-06, Vol.14 (3), p.479-491
Main Authors: Haas, Z.J., Halpern, J.Y., Li Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations of flooding, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing protocols. Gossiping exhibits bimodal behavior in sufficiently large networks: in some executions, the gossip dies out quickly and hardly any node gets the message; in the remaining executions, a substantial fraction of the nodes gets the message. The fraction of executions in which most nodes get the message depends on the gossiping probability and the topology of the network. In the networks we have considered, using gossiping probability between 0.6 and 0.8 suffices to ensure that almost every node gets the message in almost every execution. For large networks, this simple gossiping protocol uses up to 35% fewer messages than flooding, with improved performance. Gossiping can also be combined with various optimizations of flooding to yield further benefits. Simulations show that adding gossiping to AODV results in significant performance improvement, even in networks as small as 150 nodes. Our results suggest that the improvement should be even more significant in larger networks
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2006.876186