Loading…
Evolution of non-spreading Airy wavepackets in time dependent linear potentials
We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expr...
Saved in:
Published in: | Applied mathematics and computation 2011-06, Vol.217 (20), p.7966-7974 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803 |
container_end_page | 7974 |
container_issue | 20 |
container_start_page | 7966 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Zhukovsky, K.V. Dattoli, G. |
description | We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations. |
doi_str_mv | 10.1016/j.amc.2011.02.088 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889426857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311003110</els_id><sourcerecordid>889426857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9i8MSU8O4njiKmqyodUqQvMlmO_IJfUDnZa1H9PqjIzXT3pniu9Q8g9g5wBE4_bXO9MzoGxHHgOUl6QGZN1kVWibC7JDKARWQFQXJOblLYAUAtWzshmdQj9fnTB09BRH3yWhojaOv9JFy4e6Y8-4KDNF46JOk9Ht0NqcUBv0Y-0dx51pEMYp8vpPt2Sq24KvPvLOfl4Xr0vX7P15uVtuVhnpuDNmAlksmlbZmwtGbO2NpUALq0RzLS6NNZWhpUdr1phCgFMlyVvZWkECM21hGJOHs67Qwzfe0yj2rlksO-1x7BPSsqm5EJW9dRk56aJIaWInRqi2-l4VAzUyZ3aqsmdOrlTwNXkbmKezgxOLxwcRpWMQ2_QuohmVDa4f-hfYwd31g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889426857</pqid></control><display><type>article</type><title>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</title><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhukovsky, K.V. ; Dattoli, G.</creator><creatorcontrib>Zhukovsky, K.V. ; Dattoli, G.</creatorcontrib><description>We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.02.088</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Airy packet ; Analogies ; Evolution ; Exponential operator ; Fokker–Plank ; Mathematical analysis ; Mathematical models ; Propagation ; Schroedinger equation ; Schrödinger equations ; Spreading ; Transforms ; Wave packets</subject><ispartof>Applied mathematics and computation, 2011-06, Vol.217 (20), p.7966-7974</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</citedby><cites>FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311003110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids></links><search><creatorcontrib>Zhukovsky, K.V.</creatorcontrib><creatorcontrib>Dattoli, G.</creatorcontrib><title>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</title><title>Applied mathematics and computation</title><description>We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.</description><subject>Airy packet</subject><subject>Analogies</subject><subject>Evolution</subject><subject>Exponential operator</subject><subject>Fokker–Plank</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Propagation</subject><subject>Schroedinger equation</subject><subject>Schrödinger equations</subject><subject>Spreading</subject><subject>Transforms</subject><subject>Wave packets</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9i8MSU8O4njiKmqyodUqQvMlmO_IJfUDnZa1H9PqjIzXT3pniu9Q8g9g5wBE4_bXO9MzoGxHHgOUl6QGZN1kVWibC7JDKARWQFQXJOblLYAUAtWzshmdQj9fnTB09BRH3yWhojaOv9JFy4e6Y8-4KDNF46JOk9Ht0NqcUBv0Y-0dx51pEMYp8vpPt2Sq24KvPvLOfl4Xr0vX7P15uVtuVhnpuDNmAlksmlbZmwtGbO2NpUALq0RzLS6NNZWhpUdr1phCgFMlyVvZWkECM21hGJOHs67Qwzfe0yj2rlksO-1x7BPSsqm5EJW9dRk56aJIaWInRqi2-l4VAzUyZ3aqsmdOrlTwNXkbmKezgxOLxwcRpWMQ2_QuohmVDa4f-hfYwd31g</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Zhukovsky, K.V.</creator><creator>Dattoli, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110615</creationdate><title>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</title><author>Zhukovsky, K.V. ; Dattoli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Airy packet</topic><topic>Analogies</topic><topic>Evolution</topic><topic>Exponential operator</topic><topic>Fokker–Plank</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Propagation</topic><topic>Schroedinger equation</topic><topic>Schrödinger equations</topic><topic>Spreading</topic><topic>Transforms</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukovsky, K.V.</creatorcontrib><creatorcontrib>Dattoli, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukovsky, K.V.</au><au>Dattoli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>217</volume><issue>20</issue><spage>7966</spage><epage>7974</epage><pages>7966-7974</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.02.088</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-06, Vol.217 (20), p.7966-7974 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_889426857 |
source | Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Airy packet Analogies Evolution Exponential operator Fokker–Plank Mathematical analysis Mathematical models Propagation Schroedinger equation Schrödinger equations Spreading Transforms Wave packets |
title | Evolution of non-spreading Airy wavepackets in time dependent linear potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20non-spreading%20Airy%20wavepackets%20in%20time%20dependent%20linear%20potentials&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Zhukovsky,%20K.V.&rft.date=2011-06-15&rft.volume=217&rft.issue=20&rft.spage=7966&rft.epage=7974&rft.pages=7966-7974&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2011.02.088&rft_dat=%3Cproquest_cross%3E889426857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889426857&rft_id=info:pmid/&rfr_iscdi=true |