Loading…

Evolution of non-spreading Airy wavepackets in time dependent linear potentials

We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expr...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2011-06, Vol.217 (20), p.7966-7974
Main Authors: Zhukovsky, K.V., Dattoli, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803
cites cdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803
container_end_page 7974
container_issue 20
container_start_page 7966
container_title Applied mathematics and computation
container_volume 217
creator Zhukovsky, K.V.
Dattoli, G.
description We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.
doi_str_mv 10.1016/j.amc.2011.02.088
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889426857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311003110</els_id><sourcerecordid>889426857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9i8MSU8O4njiKmqyodUqQvMlmO_IJfUDnZa1H9PqjIzXT3pniu9Q8g9g5wBE4_bXO9MzoGxHHgOUl6QGZN1kVWibC7JDKARWQFQXJOblLYAUAtWzshmdQj9fnTB09BRH3yWhojaOv9JFy4e6Y8-4KDNF46JOk9Ht0NqcUBv0Y-0dx51pEMYp8vpPt2Sq24KvPvLOfl4Xr0vX7P15uVtuVhnpuDNmAlksmlbZmwtGbO2NpUALq0RzLS6NNZWhpUdr1phCgFMlyVvZWkECM21hGJOHs67Qwzfe0yj2rlksO-1x7BPSsqm5EJW9dRk56aJIaWInRqi2-l4VAzUyZ3aqsmdOrlTwNXkbmKezgxOLxwcRpWMQ2_QuohmVDa4f-hfYwd31g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889426857</pqid></control><display><type>article</type><title>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</title><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhukovsky, K.V. ; Dattoli, G.</creator><creatorcontrib>Zhukovsky, K.V. ; Dattoli, G.</creatorcontrib><description>We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.02.088</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Airy packet ; Analogies ; Evolution ; Exponential operator ; Fokker–Plank ; Mathematical analysis ; Mathematical models ; Propagation ; Schroedinger equation ; Schrödinger equations ; Spreading ; Transforms ; Wave packets</subject><ispartof>Applied mathematics and computation, 2011-06, Vol.217 (20), p.7966-7974</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</citedby><cites>FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311003110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids></links><search><creatorcontrib>Zhukovsky, K.V.</creatorcontrib><creatorcontrib>Dattoli, G.</creatorcontrib><title>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</title><title>Applied mathematics and computation</title><description>We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.</description><subject>Airy packet</subject><subject>Analogies</subject><subject>Evolution</subject><subject>Exponential operator</subject><subject>Fokker–Plank</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Propagation</subject><subject>Schroedinger equation</subject><subject>Schrödinger equations</subject><subject>Spreading</subject><subject>Transforms</subject><subject>Wave packets</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9i8MSU8O4njiKmqyodUqQvMlmO_IJfUDnZa1H9PqjIzXT3pniu9Q8g9g5wBE4_bXO9MzoGxHHgOUl6QGZN1kVWibC7JDKARWQFQXJOblLYAUAtWzshmdQj9fnTB09BRH3yWhojaOv9JFy4e6Y8-4KDNF46JOk9Ht0NqcUBv0Y-0dx51pEMYp8vpPt2Sq24KvPvLOfl4Xr0vX7P15uVtuVhnpuDNmAlksmlbZmwtGbO2NpUALq0RzLS6NNZWhpUdr1phCgFMlyVvZWkECM21hGJOHs67Qwzfe0yj2rlksO-1x7BPSsqm5EJW9dRk56aJIaWInRqi2-l4VAzUyZ3aqsmdOrlTwNXkbmKezgxOLxwcRpWMQ2_QuohmVDa4f-hfYwd31g</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Zhukovsky, K.V.</creator><creator>Dattoli, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110615</creationdate><title>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</title><author>Zhukovsky, K.V. ; Dattoli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Airy packet</topic><topic>Analogies</topic><topic>Evolution</topic><topic>Exponential operator</topic><topic>Fokker–Plank</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Propagation</topic><topic>Schroedinger equation</topic><topic>Schrödinger equations</topic><topic>Spreading</topic><topic>Transforms</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukovsky, K.V.</creatorcontrib><creatorcontrib>Dattoli, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukovsky, K.V.</au><au>Dattoli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of non-spreading Airy wavepackets in time dependent linear potentials</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>217</volume><issue>20</issue><spage>7966</spage><epage>7974</epage><pages>7966-7974</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>We report on the use of the algebraic methods to obtain the explicit form of the solution of the Schrödinger equation with a linear potential. We consider the case of the explicitly time dependent Hamiltonian and formulate the general conditions that allow for the solutions to be found that are expressed in terms of Airy functions, yielding non spreading wave packets. The relevant physical meaning of these solutions is analyzed and the examples of their applications are given. The role, played by the Airy transform and its relevance to the problems, involving linear potentials is discussed. Eventually, we present a thorough discussion on the analogy between the Airy and the Gauss–Weierstrass transform, often employed in the solutions of the heat type equations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.02.088</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-06, Vol.217 (20), p.7966-7974
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_889426857
source Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Airy packet
Analogies
Evolution
Exponential operator
Fokker–Plank
Mathematical analysis
Mathematical models
Propagation
Schroedinger equation
Schrödinger equations
Spreading
Transforms
Wave packets
title Evolution of non-spreading Airy wavepackets in time dependent linear potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20non-spreading%20Airy%20wavepackets%20in%20time%20dependent%20linear%20potentials&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Zhukovsky,%20K.V.&rft.date=2011-06-15&rft.volume=217&rft.issue=20&rft.spage=7966&rft.epage=7974&rft.pages=7966-7974&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2011.02.088&rft_dat=%3Cproquest_cross%3E889426857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-6e189bb1cd7811dd7c56028dc61cba4cdd5c14f25b6c3601a442b84c606a2a803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889426857&rft_id=info:pmid/&rfr_iscdi=true