Loading…

Quantum dot nanophotonics - from waveguiding to integration

Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication proces...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Nanophotonics 2009-01, Vol.3 (1), p.031603-0316014
Main Authors: Lin, Lih Y, Wang, Chia-Jean, Hegg, Michael C, Huang, Ludan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3
cites cdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3
container_end_page 0316014
container_issue 1
container_start_page 031603
container_title Journal of Nanophotonics
container_volume 3
creator Lin, Lih Y
Wang, Chia-Jean
Hegg, Michael C
Huang, Ludan
description Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.
doi_str_mv 10.1117/1.3046754
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889430089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889430089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWKsH_0Fu4mFrsskmWTyV4ifFUtBzyOajRrrJuskq_ntbW8X3MO8cHoZhADjHaIIx5ld4QhBlvKIHYIRrQouSIXH4zx-Dk5TeEKqIEGIErpeDCnlooYkZBhVi9xpzDF4nWEDXxxZ-qg-7GrzxYQVzhD5ku-pV9jGcgiOn1sme7f8YvNzePM_ui_ni7mE2nRd60yUXgnLR0JIT3tSYu6osGSGYMl077kjDNTMNo0TXpraMKmS50cYZQzjCFaeWjMHFLrfr4_tgU5atT9qu1yrYOCQpRE0JQqLekJc7Uvcxpd462fW-Vf2XxEhu95FY7vfZsOWOTZ23f9zj02I6W6LtkR_FiGD268k3VQdklg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889430089</pqid></control><display><type>article</type><title>Quantum dot nanophotonics - from waveguiding to integration</title><source>SPIE Digital Library</source><creator>Lin, Lih Y ; Wang, Chia-Jean ; Hegg, Michael C ; Huang, Ludan</creator><creatorcontrib>Lin, Lih Y ; Wang, Chia-Jean ; Hegg, Michael C ; Huang, Ludan</creatorcontrib><description>Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.</description><identifier>ISSN: 1934-2608</identifier><identifier>EISSN: 1934-2608</identifier><identifier>DOI: 10.1117/1.3046754</identifier><identifier>CODEN: JNOACQ</identifier><language>eng</language><subject>Colloiding ; Devices ; Nanocomposites ; Nanomaterials ; nanophotonics ; Nanostructure ; photodetector ; quantum dot ; Quantum dots ; Self assembly ; sub-diffraction limit ; waveguide ; Waveguides</subject><ispartof>Journal of Nanophotonics, 2009-01, Vol.3 (1), p.031603-0316014</ispartof><rights>2009 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</citedby><cites>FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.3046754$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://dx.doi.org/10.1117/1.3046754$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,18965,27924,27925,55386,55387</link.rule.ids></links><search><creatorcontrib>Lin, Lih Y</creatorcontrib><creatorcontrib>Wang, Chia-Jean</creatorcontrib><creatorcontrib>Hegg, Michael C</creatorcontrib><creatorcontrib>Huang, Ludan</creatorcontrib><title>Quantum dot nanophotonics - from waveguiding to integration</title><title>Journal of Nanophotonics</title><description>Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.</description><subject>Colloiding</subject><subject>Devices</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanophotonics</subject><subject>Nanostructure</subject><subject>photodetector</subject><subject>quantum dot</subject><subject>Quantum dots</subject><subject>Self assembly</subject><subject>sub-diffraction limit</subject><subject>waveguide</subject><subject>Waveguides</subject><issn>1934-2608</issn><issn>1934-2608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEYhIMoWKsH_0Fu4mFrsskmWTyV4ifFUtBzyOajRrrJuskq_ntbW8X3MO8cHoZhADjHaIIx5ld4QhBlvKIHYIRrQouSIXH4zx-Dk5TeEKqIEGIErpeDCnlooYkZBhVi9xpzDF4nWEDXxxZ-qg-7GrzxYQVzhD5ku-pV9jGcgiOn1sme7f8YvNzePM_ui_ni7mE2nRd60yUXgnLR0JIT3tSYu6osGSGYMl077kjDNTMNo0TXpraMKmS50cYZQzjCFaeWjMHFLrfr4_tgU5atT9qu1yrYOCQpRE0JQqLekJc7Uvcxpd462fW-Vf2XxEhu95FY7vfZsOWOTZ23f9zj02I6W6LtkR_FiGD268k3VQdklg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lin, Lih Y</creator><creator>Wang, Chia-Jean</creator><creator>Hegg, Michael C</creator><creator>Huang, Ludan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090101</creationdate><title>Quantum dot nanophotonics - from waveguiding to integration</title><author>Lin, Lih Y ; Wang, Chia-Jean ; Hegg, Michael C ; Huang, Ludan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Colloiding</topic><topic>Devices</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanophotonics</topic><topic>Nanostructure</topic><topic>photodetector</topic><topic>quantum dot</topic><topic>Quantum dots</topic><topic>Self assembly</topic><topic>sub-diffraction limit</topic><topic>waveguide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lih Y</creatorcontrib><creatorcontrib>Wang, Chia-Jean</creatorcontrib><creatorcontrib>Hegg, Michael C</creatorcontrib><creatorcontrib>Huang, Ludan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Nanophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lih Y</au><au>Wang, Chia-Jean</au><au>Hegg, Michael C</au><au>Huang, Ludan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum dot nanophotonics - from waveguiding to integration</atitle><jtitle>Journal of Nanophotonics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>3</volume><issue>1</issue><spage>031603</spage><epage>0316014</epage><pages>031603-0316014</pages><issn>1934-2608</issn><eissn>1934-2608</eissn><coden>JNOACQ</coden><abstract>Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.</abstract><doi>10.1117/1.3046754</doi><tpages>284412</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1934-2608
ispartof Journal of Nanophotonics, 2009-01, Vol.3 (1), p.031603-0316014
issn 1934-2608
1934-2608
language eng
recordid cdi_proquest_miscellaneous_889430089
source SPIE Digital Library
subjects Colloiding
Devices
Nanocomposites
Nanomaterials
nanophotonics
Nanostructure
photodetector
quantum dot
Quantum dots
Self assembly
sub-diffraction limit
waveguide
Waveguides
title Quantum dot nanophotonics - from waveguiding to integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20dot%20nanophotonics%20-%20from%20waveguiding%20to%20integration&rft.jtitle=Journal%20of%20Nanophotonics&rft.au=Lin,%20Lih%20Y&rft.date=2009-01-01&rft.volume=3&rft.issue=1&rft.spage=031603&rft.epage=0316014&rft.pages=031603-0316014&rft.issn=1934-2608&rft.eissn=1934-2608&rft.coden=JNOACQ&rft_id=info:doi/10.1117/1.3046754&rft_dat=%3Cproquest_cross%3E889430089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889430089&rft_id=info:pmid/&rfr_iscdi=true