Loading…
Quantum dot nanophotonics - from waveguiding to integration
Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication proces...
Saved in:
Published in: | Journal of Nanophotonics 2009-01, Vol.3 (1), p.031603-0316014 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3 |
container_end_page | 0316014 |
container_issue | 1 |
container_start_page | 031603 |
container_title | Journal of Nanophotonics |
container_volume | 3 |
creator | Lin, Lih Y Wang, Chia-Jean Hegg, Michael C Huang, Ludan |
description | Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications. |
doi_str_mv | 10.1117/1.3046754 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889430089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889430089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWKsH_0Fu4mFrsskmWTyV4ifFUtBzyOajRrrJuskq_ntbW8X3MO8cHoZhADjHaIIx5ld4QhBlvKIHYIRrQouSIXH4zx-Dk5TeEKqIEGIErpeDCnlooYkZBhVi9xpzDF4nWEDXxxZ-qg-7GrzxYQVzhD5ku-pV9jGcgiOn1sme7f8YvNzePM_ui_ni7mE2nRd60yUXgnLR0JIT3tSYu6osGSGYMl077kjDNTMNo0TXpraMKmS50cYZQzjCFaeWjMHFLrfr4_tgU5atT9qu1yrYOCQpRE0JQqLekJc7Uvcxpd462fW-Vf2XxEhu95FY7vfZsOWOTZ23f9zj02I6W6LtkR_FiGD268k3VQdklg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889430089</pqid></control><display><type>article</type><title>Quantum dot nanophotonics - from waveguiding to integration</title><source>SPIE Digital Library</source><creator>Lin, Lih Y ; Wang, Chia-Jean ; Hegg, Michael C ; Huang, Ludan</creator><creatorcontrib>Lin, Lih Y ; Wang, Chia-Jean ; Hegg, Michael C ; Huang, Ludan</creatorcontrib><description>Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.</description><identifier>ISSN: 1934-2608</identifier><identifier>EISSN: 1934-2608</identifier><identifier>DOI: 10.1117/1.3046754</identifier><identifier>CODEN: JNOACQ</identifier><language>eng</language><subject>Colloiding ; Devices ; Nanocomposites ; Nanomaterials ; nanophotonics ; Nanostructure ; photodetector ; quantum dot ; Quantum dots ; Self assembly ; sub-diffraction limit ; waveguide ; Waveguides</subject><ispartof>Journal of Nanophotonics, 2009-01, Vol.3 (1), p.031603-0316014</ispartof><rights>2009 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</citedby><cites>FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.3046754$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://dx.doi.org/10.1117/1.3046754$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,18965,27924,27925,55386,55387</link.rule.ids></links><search><creatorcontrib>Lin, Lih Y</creatorcontrib><creatorcontrib>Wang, Chia-Jean</creatorcontrib><creatorcontrib>Hegg, Michael C</creatorcontrib><creatorcontrib>Huang, Ludan</creatorcontrib><title>Quantum dot nanophotonics - from waveguiding to integration</title><title>Journal of Nanophotonics</title><description>Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.</description><subject>Colloiding</subject><subject>Devices</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanophotonics</subject><subject>Nanostructure</subject><subject>photodetector</subject><subject>quantum dot</subject><subject>Quantum dots</subject><subject>Self assembly</subject><subject>sub-diffraction limit</subject><subject>waveguide</subject><subject>Waveguides</subject><issn>1934-2608</issn><issn>1934-2608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEYhIMoWKsH_0Fu4mFrsskmWTyV4ifFUtBzyOajRrrJuskq_ntbW8X3MO8cHoZhADjHaIIx5ld4QhBlvKIHYIRrQouSIXH4zx-Dk5TeEKqIEGIErpeDCnlooYkZBhVi9xpzDF4nWEDXxxZ-qg-7GrzxYQVzhD5ku-pV9jGcgiOn1sme7f8YvNzePM_ui_ni7mE2nRd60yUXgnLR0JIT3tSYu6osGSGYMl077kjDNTMNo0TXpraMKmS50cYZQzjCFaeWjMHFLrfr4_tgU5atT9qu1yrYOCQpRE0JQqLekJc7Uvcxpd462fW-Vf2XxEhu95FY7vfZsOWOTZ23f9zj02I6W6LtkR_FiGD268k3VQdklg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lin, Lih Y</creator><creator>Wang, Chia-Jean</creator><creator>Hegg, Michael C</creator><creator>Huang, Ludan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090101</creationdate><title>Quantum dot nanophotonics - from waveguiding to integration</title><author>Lin, Lih Y ; Wang, Chia-Jean ; Hegg, Michael C ; Huang, Ludan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Colloiding</topic><topic>Devices</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanophotonics</topic><topic>Nanostructure</topic><topic>photodetector</topic><topic>quantum dot</topic><topic>Quantum dots</topic><topic>Self assembly</topic><topic>sub-diffraction limit</topic><topic>waveguide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lih Y</creatorcontrib><creatorcontrib>Wang, Chia-Jean</creatorcontrib><creatorcontrib>Hegg, Michael C</creatorcontrib><creatorcontrib>Huang, Ludan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Nanophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lih Y</au><au>Wang, Chia-Jean</au><au>Hegg, Michael C</au><au>Huang, Ludan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum dot nanophotonics - from waveguiding to integration</atitle><jtitle>Journal of Nanophotonics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>3</volume><issue>1</issue><spage>031603</spage><epage>0316014</epage><pages>031603-0316014</pages><issn>1934-2608</issn><eissn>1934-2608</eissn><coden>JNOACQ</coden><abstract>Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.</abstract><doi>10.1117/1.3046754</doi><tpages>284412</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-2608 |
ispartof | Journal of Nanophotonics, 2009-01, Vol.3 (1), p.031603-0316014 |
issn | 1934-2608 1934-2608 |
language | eng |
recordid | cdi_proquest_miscellaneous_889430089 |
source | SPIE Digital Library |
subjects | Colloiding Devices Nanocomposites Nanomaterials nanophotonics Nanostructure photodetector quantum dot Quantum dots Self assembly sub-diffraction limit waveguide Waveguides |
title | Quantum dot nanophotonics - from waveguiding to integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20dot%20nanophotonics%20-%20from%20waveguiding%20to%20integration&rft.jtitle=Journal%20of%20Nanophotonics&rft.au=Lin,%20Lih%20Y&rft.date=2009-01-01&rft.volume=3&rft.issue=1&rft.spage=031603&rft.epage=0316014&rft.pages=031603-0316014&rft.issn=1934-2608&rft.eissn=1934-2608&rft.coden=JNOACQ&rft_id=info:doi/10.1117/1.3046754&rft_dat=%3Cproquest_cross%3E889430089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-8478b42737b917f522633146c9f7f3b7c6db643c9d9e64a0e7dcdfdd3701574e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889430089&rft_id=info:pmid/&rfr_iscdi=true |