Loading…
Increasing and decreasing sequences in fillings of moon polyominoes
We present an adaptation of jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob...
Saved in:
Published in: | Advances in applied mathematics 2011-07, Vol.47 (1), p.57-87 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3 |
container_end_page | 87 |
container_issue | 1 |
container_start_page | 57 |
container_title | Advances in applied mathematics |
container_volume | 47 |
creator | Rubey, Martin |
description | We present an adaptation of
jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results. |
doi_str_mv | 10.1016/j.aam.2009.11.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889438251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885810000485</els_id><sourcerecordid>889438251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWB8_wNtexNOumWw2TfAkxUeh4EXPIc0mkrKb1Ewr9N-b0tKjp2GGb14fIXdAG6AgHleNMWPDKFUNQEOhPSMToIrWjE75OZlQUKKWspOX5ApxRQvIRDshs3m02RkM8bsysa96d0rR_WxdtA6rECsfhqEUsUq-GlOK1ToNuzSGmBzekAtvBnS3x3hNvl5fPmfv9eLjbT57XtSWU7ap1dKznkvKlWHC9kp0SrKpap0Qcmo9Z1QCF462qoPOeAvGg-2Y7CxXLV_27TV5OMxd51ROw40eA1o3DCa6tEUtpeKtZB0UEg6kzQkxO6_XOYwm7zRQvfelV7r40ntfGkAXX6Xn_jjdoDWDzybagKdGxllRSPfc04Fz5dXf4LJGG_ae-pCd3eg-hX-2_AHXEH7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889438251</pqid></control><display><type>article</type><title>Increasing and decreasing sequences in fillings of moon polyominoes</title><source>ScienceDirect Journals</source><creator>Rubey, Martin</creator><creatorcontrib>Rubey, Martin</creatorcontrib><description>We present an adaptation of
jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1016/j.aam.2009.11.013</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Adaptation ; Construction ; Crossings and nestings ; Evacuation ; Exact sciences and technology ; General mathematics ; General, history and biography ; Growth diagrams ; Jeu de taquin ; L-convex polyominoes ; Mathematical analysis ; Mathematics ; Moon ; Moon polyominoes ; Numerical analysis ; Numerical analysis. Scientific computation ; Plactic monoid ; Promotion ; Sciences and techniques of general use ; Symmetry</subject><ispartof>Advances in applied mathematics, 2011-07, Vol.47 (1), p.57-87</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</citedby><cites>FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24219603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubey, Martin</creatorcontrib><title>Increasing and decreasing sequences in fillings of moon polyominoes</title><title>Advances in applied mathematics</title><description>We present an adaptation of
jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.</description><subject>Adaptation</subject><subject>Construction</subject><subject>Crossings and nestings</subject><subject>Evacuation</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Growth diagrams</subject><subject>Jeu de taquin</subject><subject>L-convex polyominoes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Moon</subject><subject>Moon polyominoes</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Plactic monoid</subject><subject>Promotion</subject><subject>Sciences and techniques of general use</subject><subject>Symmetry</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWB8_wNtexNOumWw2TfAkxUeh4EXPIc0mkrKb1Ewr9N-b0tKjp2GGb14fIXdAG6AgHleNMWPDKFUNQEOhPSMToIrWjE75OZlQUKKWspOX5ApxRQvIRDshs3m02RkM8bsysa96d0rR_WxdtA6rECsfhqEUsUq-GlOK1ToNuzSGmBzekAtvBnS3x3hNvl5fPmfv9eLjbT57XtSWU7ap1dKznkvKlWHC9kp0SrKpap0Qcmo9Z1QCF462qoPOeAvGg-2Y7CxXLV_27TV5OMxd51ROw40eA1o3DCa6tEUtpeKtZB0UEg6kzQkxO6_XOYwm7zRQvfelV7r40ntfGkAXX6Xn_jjdoDWDzybagKdGxllRSPfc04Fz5dXf4LJGG_ae-pCd3eg-hX-2_AHXEH7o</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Rubey, Martin</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Increasing and decreasing sequences in fillings of moon polyominoes</title><author>Rubey, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Construction</topic><topic>Crossings and nestings</topic><topic>Evacuation</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Growth diagrams</topic><topic>Jeu de taquin</topic><topic>L-convex polyominoes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Moon</topic><topic>Moon polyominoes</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Plactic monoid</topic><topic>Promotion</topic><topic>Sciences and techniques of general use</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubey, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubey, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing and decreasing sequences in fillings of moon polyominoes</atitle><jtitle>Advances in applied mathematics</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>47</volume><issue>1</issue><spage>57</spage><epage>87</epage><pages>57-87</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>We present an adaptation of
jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aam.2009.11.013</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8858 |
ispartof | Advances in applied mathematics, 2011-07, Vol.47 (1), p.57-87 |
issn | 0196-8858 1090-2074 |
language | eng |
recordid | cdi_proquest_miscellaneous_889438251 |
source | ScienceDirect Journals |
subjects | Adaptation Construction Crossings and nestings Evacuation Exact sciences and technology General mathematics General, history and biography Growth diagrams Jeu de taquin L-convex polyominoes Mathematical analysis Mathematics Moon Moon polyominoes Numerical analysis Numerical analysis. Scientific computation Plactic monoid Promotion Sciences and techniques of general use Symmetry |
title | Increasing and decreasing sequences in fillings of moon polyominoes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20and%20decreasing%20sequences%20in%20fillings%20of%20moon%20polyominoes&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Rubey,%20Martin&rft.date=2011-07-01&rft.volume=47&rft.issue=1&rft.spage=57&rft.epage=87&rft.pages=57-87&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1016/j.aam.2009.11.013&rft_dat=%3Cproquest_cross%3E889438251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889438251&rft_id=info:pmid/&rfr_iscdi=true |