Loading…

Increasing and decreasing sequences in fillings of moon polyominoes

We present an adaptation of jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied mathematics 2011-07, Vol.47 (1), p.57-87
Main Author: Rubey, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3
cites cdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3
container_end_page 87
container_issue 1
container_start_page 57
container_title Advances in applied mathematics
container_volume 47
creator Rubey, Martin
description We present an adaptation of jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.
doi_str_mv 10.1016/j.aam.2009.11.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889438251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885810000485</els_id><sourcerecordid>889438251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWB8_wNtexNOumWw2TfAkxUeh4EXPIc0mkrKb1Ewr9N-b0tKjp2GGb14fIXdAG6AgHleNMWPDKFUNQEOhPSMToIrWjE75OZlQUKKWspOX5ApxRQvIRDshs3m02RkM8bsysa96d0rR_WxdtA6rECsfhqEUsUq-GlOK1ToNuzSGmBzekAtvBnS3x3hNvl5fPmfv9eLjbT57XtSWU7ap1dKznkvKlWHC9kp0SrKpap0Qcmo9Z1QCF462qoPOeAvGg-2Y7CxXLV_27TV5OMxd51ROw40eA1o3DCa6tEUtpeKtZB0UEg6kzQkxO6_XOYwm7zRQvfelV7r40ntfGkAXX6Xn_jjdoDWDzybagKdGxllRSPfc04Fz5dXf4LJGG_ae-pCd3eg-hX-2_AHXEH7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889438251</pqid></control><display><type>article</type><title>Increasing and decreasing sequences in fillings of moon polyominoes</title><source>ScienceDirect Journals</source><creator>Rubey, Martin</creator><creatorcontrib>Rubey, Martin</creatorcontrib><description>We present an adaptation of jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1016/j.aam.2009.11.013</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Adaptation ; Construction ; Crossings and nestings ; Evacuation ; Exact sciences and technology ; General mathematics ; General, history and biography ; Growth diagrams ; Jeu de taquin ; L-convex polyominoes ; Mathematical analysis ; Mathematics ; Moon ; Moon polyominoes ; Numerical analysis ; Numerical analysis. Scientific computation ; Plactic monoid ; Promotion ; Sciences and techniques of general use ; Symmetry</subject><ispartof>Advances in applied mathematics, 2011-07, Vol.47 (1), p.57-87</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</citedby><cites>FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24219603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubey, Martin</creatorcontrib><title>Increasing and decreasing sequences in fillings of moon polyominoes</title><title>Advances in applied mathematics</title><description>We present an adaptation of jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.</description><subject>Adaptation</subject><subject>Construction</subject><subject>Crossings and nestings</subject><subject>Evacuation</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Growth diagrams</subject><subject>Jeu de taquin</subject><subject>L-convex polyominoes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Moon</subject><subject>Moon polyominoes</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Plactic monoid</subject><subject>Promotion</subject><subject>Sciences and techniques of general use</subject><subject>Symmetry</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWB8_wNtexNOumWw2TfAkxUeh4EXPIc0mkrKb1Ewr9N-b0tKjp2GGb14fIXdAG6AgHleNMWPDKFUNQEOhPSMToIrWjE75OZlQUKKWspOX5ApxRQvIRDshs3m02RkM8bsysa96d0rR_WxdtA6rECsfhqEUsUq-GlOK1ToNuzSGmBzekAtvBnS3x3hNvl5fPmfv9eLjbT57XtSWU7ap1dKznkvKlWHC9kp0SrKpap0Qcmo9Z1QCF462qoPOeAvGg-2Y7CxXLV_27TV5OMxd51ROw40eA1o3DCa6tEUtpeKtZB0UEg6kzQkxO6_XOYwm7zRQvfelV7r40ntfGkAXX6Xn_jjdoDWDzybagKdGxllRSPfc04Fz5dXf4LJGG_ae-pCd3eg-hX-2_AHXEH7o</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Rubey, Martin</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Increasing and decreasing sequences in fillings of moon polyominoes</title><author>Rubey, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Construction</topic><topic>Crossings and nestings</topic><topic>Evacuation</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Growth diagrams</topic><topic>Jeu de taquin</topic><topic>L-convex polyominoes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Moon</topic><topic>Moon polyominoes</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Plactic monoid</topic><topic>Promotion</topic><topic>Sciences and techniques of general use</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubey, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubey, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing and decreasing sequences in fillings of moon polyominoes</atitle><jtitle>Advances in applied mathematics</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>47</volume><issue>1</issue><spage>57</spage><epage>87</epage><pages>57-87</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>We present an adaptation of jeu de taquin and promotion for arbitrary fillings of moon polyominoes. Using this construction we show various symmetry properties of such fillings taking into account the lengths of longest increasing and decreasing chains. In particular, we prove a conjecture of Jakob Jonsson. We also relate our construction to the one recently employed by Christian Krattenthaler, thus generalising his results.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aam.2009.11.013</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 2011-07, Vol.47 (1), p.57-87
issn 0196-8858
1090-2074
language eng
recordid cdi_proquest_miscellaneous_889438251
source ScienceDirect Journals
subjects Adaptation
Construction
Crossings and nestings
Evacuation
Exact sciences and technology
General mathematics
General, history and biography
Growth diagrams
Jeu de taquin
L-convex polyominoes
Mathematical analysis
Mathematics
Moon
Moon polyominoes
Numerical analysis
Numerical analysis. Scientific computation
Plactic monoid
Promotion
Sciences and techniques of general use
Symmetry
title Increasing and decreasing sequences in fillings of moon polyominoes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20and%20decreasing%20sequences%20in%20fillings%20of%20moon%20polyominoes&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Rubey,%20Martin&rft.date=2011-07-01&rft.volume=47&rft.issue=1&rft.spage=57&rft.epage=87&rft.pages=57-87&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1016/j.aam.2009.11.013&rft_dat=%3Cproquest_cross%3E889438251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-9bf2d48049a26cd965982793e6687cf4208146e039515afc1af1c5285c4934bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=889438251&rft_id=info:pmid/&rfr_iscdi=true