Loading…

Partition-based vector filtering technique for suppression of noise in digital color images

A partition-based adaptive vector filter is proposed for the restoration of corrupted digital color images. The novelty of the filter lies in its unique three-stage adaptive estimation. The local image structure is first estimated by a series of center-weighted reference filters. Then the distances...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2006-08, Vol.15 (8), p.2324-2342
Main Authors: Ma, Zhonghua, Wu, Hong Ren, Feng, Dagan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A partition-based adaptive vector filter is proposed for the restoration of corrupted digital color images. The novelty of the filter lies in its unique three-stage adaptive estimation. The local image structure is first estimated by a series of center-weighted reference filters. Then the distances between the observed central pixel and estimated references are utilized to classify the local inputs into one of preset structure partition cells. Finally, a weighted filtering operation, indexed by the partition cell, is applied to the estimated references in order to restore the central pixel value. The weighted filtering operation is optimized off-line for each partition cell to achieve the best tradeoff between noise suppression and structure preservation. Recursive filtering operation and recursive weight training are also investigated to further boost the restoration performance. The proposed filter has demonstrated satisfactory results in suppressing many distinct types of noise in natural color images. Noticeable performance gains are demonstrated over other prior-art methods in terms of standard objective measurements, the visual image quality and the computational complexity.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2006.877066