Loading…

Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis

Ethanol is one of the most efficient carbon sources for Euglena gracilis . Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitocho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioenergetics and biomembranes 2011-10, Vol.43 (5), p.519-530
Main Authors: Yoval-Sánchez, Belem, Jasso-Chávez, Ricardo, Lira-Silva, Elizabeth, Moreno-Sánchez, Rafael, Rodríguez-Zavala, José S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783
cites cdi_FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783
container_end_page 530
container_issue 5
container_start_page 519
container_title Journal of bioenergetics and biomembranes
container_volume 43
creator Yoval-Sánchez, Belem
Jasso-Chávez, Ricardo
Lira-Silva, Elizabeth
Moreno-Sánchez, Rafael
Rodríguez-Zavala, José S.
description Ethanol is one of the most efficient carbon sources for Euglena gracilis . Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD + , while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD + . These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.
doi_str_mv 10.1007/s10863-011-9373-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_890680002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455465411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7vrxA7xI8eKpOpOkbXqUdf2ARS8K3kKapmslbdZkK6y_3iy7KgieMiTPvJl5CDlBuECA4jIgiJylgJiWrGAp3yFjzGKRC4G7ZAzIs5QX5cuIHITwBgACMtgnI4qCsRzYmFw_uA9jk65dOv3q-tq3yibKavfq4q1ZqsrZ9rPt54npP1edCYlrkukwt6ZXydwr3do2HJG9RtlgjrfnIXm-mT5N7tLZ4-395GqWalbAMtVxtjKnFeVVQ4uMGyxZjYi0qVmmteAVoxXjVUk1N6auBa8z3hiWV1qAKgQ7JOeb3IV374MJS9m1QRtrVW_cEKQoIRdxSxrJsz_kmxt8H4dbQ5CJEjFCuIG0dyF408iFbzvlVxJBrgXLjWAZBcu1YMljz-k2eKg6U_90fBuNAN0AIT71c-N_f_4_9QsLKYVh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890058911</pqid></control><display><type>article</type><title>Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis</title><source>Springer Link</source><creator>Yoval-Sánchez, Belem ; Jasso-Chávez, Ricardo ; Lira-Silva, Elizabeth ; Moreno-Sánchez, Rafael ; Rodríguez-Zavala, José S.</creator><creatorcontrib>Yoval-Sánchez, Belem ; Jasso-Chávez, Ricardo ; Lira-Silva, Elizabeth ; Moreno-Sánchez, Rafael ; Rodríguez-Zavala, José S.</creatorcontrib><description>Ethanol is one of the most efficient carbon sources for Euglena gracilis . Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD + , while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD + . These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.</description><identifier>ISSN: 0145-479X</identifier><identifier>EISSN: 1573-6881</identifier><identifier>DOI: 10.1007/s10863-011-9373-4</identifier><identifier>PMID: 21833603</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aldehydes ; Animal Anatomy ; Animal Biochemistry ; Biochemistry ; Bioorganic Chemistry ; Carbon sources ; Cellular biology ; Chemistry ; Chemistry and Materials Science ; Dehydrogenase ; Enzymes ; Esters ; Ethanol ; Ethanol - metabolism ; Euglena gracilis - enzymology ; Fractionation ; Histology ; Kinetics ; Membrane Potential, Mitochondrial - physiology ; Membranes ; Metabolism ; Mitochondria ; Mitochondria - enzymology ; Mitochondrial Proteins - metabolism ; Morphology ; Organic Chemistry ; Oxidoreductases - metabolism ; Protozoan Proteins - metabolism</subject><ispartof>Journal of bioenergetics and biomembranes, 2011-10, Vol.43 (5), p.519-530</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783</citedby><cites>FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21833603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoval-Sánchez, Belem</creatorcontrib><creatorcontrib>Jasso-Chávez, Ricardo</creatorcontrib><creatorcontrib>Lira-Silva, Elizabeth</creatorcontrib><creatorcontrib>Moreno-Sánchez, Rafael</creatorcontrib><creatorcontrib>Rodríguez-Zavala, José S.</creatorcontrib><title>Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis</title><title>Journal of bioenergetics and biomembranes</title><addtitle>J Bioenerg Biomembr</addtitle><addtitle>J Bioenerg Biomembr</addtitle><description>Ethanol is one of the most efficient carbon sources for Euglena gracilis . Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD + , while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD + . These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.</description><subject>Aldehydes</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Carbon sources</subject><subject>Cellular biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dehydrogenase</subject><subject>Enzymes</subject><subject>Esters</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Euglena gracilis - enzymology</subject><subject>Fractionation</subject><subject>Histology</subject><subject>Kinetics</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Morphology</subject><subject>Organic Chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Protozoan Proteins - metabolism</subject><issn>0145-479X</issn><issn>1573-6881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7vrxA7xI8eKpOpOkbXqUdf2ARS8K3kKapmslbdZkK6y_3iy7KgieMiTPvJl5CDlBuECA4jIgiJylgJiWrGAp3yFjzGKRC4G7ZAzIs5QX5cuIHITwBgACMtgnI4qCsRzYmFw_uA9jk65dOv3q-tq3yibKavfq4q1ZqsrZ9rPt54npP1edCYlrkukwt6ZXydwr3do2HJG9RtlgjrfnIXm-mT5N7tLZ4-395GqWalbAMtVxtjKnFeVVQ4uMGyxZjYi0qVmmteAVoxXjVUk1N6auBa8z3hiWV1qAKgQ7JOeb3IV374MJS9m1QRtrVW_cEKQoIRdxSxrJsz_kmxt8H4dbQ5CJEjFCuIG0dyF408iFbzvlVxJBrgXLjWAZBcu1YMljz-k2eKg6U_90fBuNAN0AIT71c-N_f_4_9QsLKYVh</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Yoval-Sánchez, Belem</creator><creator>Jasso-Chávez, Ricardo</creator><creator>Lira-Silva, Elizabeth</creator><creator>Moreno-Sánchez, Rafael</creator><creator>Rodríguez-Zavala, José S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis</title><author>Yoval-Sánchez, Belem ; Jasso-Chávez, Ricardo ; Lira-Silva, Elizabeth ; Moreno-Sánchez, Rafael ; Rodríguez-Zavala, José S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aldehydes</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Carbon sources</topic><topic>Cellular biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dehydrogenase</topic><topic>Enzymes</topic><topic>Esters</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Euglena gracilis - enzymology</topic><topic>Fractionation</topic><topic>Histology</topic><topic>Kinetics</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Morphology</topic><topic>Organic Chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Protozoan Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoval-Sánchez, Belem</creatorcontrib><creatorcontrib>Jasso-Chávez, Ricardo</creatorcontrib><creatorcontrib>Lira-Silva, Elizabeth</creatorcontrib><creatorcontrib>Moreno-Sánchez, Rafael</creatorcontrib><creatorcontrib>Rodríguez-Zavala, José S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioenergetics and biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoval-Sánchez, Belem</au><au>Jasso-Chávez, Ricardo</au><au>Lira-Silva, Elizabeth</au><au>Moreno-Sánchez, Rafael</au><au>Rodríguez-Zavala, José S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis</atitle><jtitle>Journal of bioenergetics and biomembranes</jtitle><stitle>J Bioenerg Biomembr</stitle><addtitle>J Bioenerg Biomembr</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>43</volume><issue>5</issue><spage>519</spage><epage>530</epage><pages>519-530</pages><issn>0145-479X</issn><eissn>1573-6881</eissn><abstract>Ethanol is one of the most efficient carbon sources for Euglena gracilis . Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD + , while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD + . These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21833603</pmid><doi>10.1007/s10863-011-9373-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0145-479X
ispartof Journal of bioenergetics and biomembranes, 2011-10, Vol.43 (5), p.519-530
issn 0145-479X
1573-6881
language eng
recordid cdi_proquest_miscellaneous_890680002
source Springer Link
subjects Aldehydes
Animal Anatomy
Animal Biochemistry
Biochemistry
Bioorganic Chemistry
Carbon sources
Cellular biology
Chemistry
Chemistry and Materials Science
Dehydrogenase
Enzymes
Esters
Ethanol
Ethanol - metabolism
Euglena gracilis - enzymology
Fractionation
Histology
Kinetics
Membrane Potential, Mitochondrial - physiology
Membranes
Metabolism
Mitochondria
Mitochondria - enzymology
Mitochondrial Proteins - metabolism
Morphology
Organic Chemistry
Oxidoreductases - metabolism
Protozoan Proteins - metabolism
title Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20mitochondrial%20alcohol%20metabolizing%20enzymes%20of%20Euglena%20gracilis&rft.jtitle=Journal%20of%20bioenergetics%20and%20biomembranes&rft.au=Yoval-S%C3%A1nchez,%20Belem&rft.date=2011-10-01&rft.volume=43&rft.issue=5&rft.spage=519&rft.epage=530&rft.pages=519-530&rft.issn=0145-479X&rft.eissn=1573-6881&rft_id=info:doi/10.1007/s10863-011-9373-4&rft_dat=%3Cproquest_cross%3E2455465411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-c157962b24bf2754e193d1112fd35cc84b32b34b92c4eedd84d54fe36bc80a783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=890058911&rft_id=info:pmid/21833603&rfr_iscdi=true