Loading…

Spectrum of LDLR gene mutations, including a novel mutation causing familial hypercholesterolaemia, in North-western Greece

Abstract Background Familial Hypercholesterolaemia (FH) is a clinical syndrome characterised by elevated serum low-density lipoprotein (LDL) cholesterol, by tendon xanthomata and clinical manifestations of ischaemic heart disease in early life. Typically, it results from mutations in the low-density...

Full description

Saved in:
Bibliographic Details
Published in:European journal of internal medicine 2011-10, Vol.22 (5), p.e55-e59
Main Authors: Diakou, Maria, Miltiadous, George, Xenophontos, Stavroulla L, Manoli, Panayiotis, Cariolou, Marios A, Elisaf, Moses
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Familial Hypercholesterolaemia (FH) is a clinical syndrome characterised by elevated serum low-density lipoprotein (LDL) cholesterol, by tendon xanthomata and clinical manifestations of ischaemic heart disease in early life. Typically, it results from mutations in the low-density lipoprotein receptor (LDLR) gene. Furthermore, there are 3 additional genetic disorders that cause clinical syndromes that mimic FH. These are: 1) familial ligand-defective apolipoprotein (apo)-B (FLDH), 2) familial hypercholesterolaemia type 3 (FH3) and 3) autosomal recessive hypercholesterolaemia (ARH). The aim of this study was to elaborate the impact of the above genetic disorders in Greek patients with a clinical diagnosis of FH. Methods In this study, we assessed the contribution of the LDLR, Apo B, ARH and PCSK9 genes in the expression of FH in North-western Greece. Two hundred and fifty-four (254) probands with a clinical diagnosis of FH were included in the study. Results One hundred and sixty-nine (169) patients had one of the following LDLR gene mutations: 81T>G, 1775G>A, 517T>C, 858C>A, 1352T>C, 1285G>A, 761A>C, 1195G>A, 1646G>A and a deletion mutation g.387-410del24 in exon 4. We sequenced the Apo B, ARH and PCSK9 genes in 40, randomly selected patients, from the 85 patients with no identified LDLR gene defects. In these 40, randomly selected patients, with the exception of benign single nucleotide polymorphisms, no functional mutations were identified for all the above mentioned sequenced genes. Conclusion Our results reveal substantial genetic heterogeneity for FH in North-western Greece with at least ten LDLR gene mutations present in the study population. One of these mutations although quite rare is reported here for the first time in the scientific literature. The detection of these mutations is important as they may be used to design multiplex detection assays for large scale population screening programmes to facilitate primary and secondary prevention of cardiovascular disease in the region. Finally, ARH, Apo B and PCSK9 gene defects were excluded from causing FH in a subgroup of the study population indicating that other yet unrecognized genes may be involved in causing the clinical feature of FH, and/or that large scale deletions/duplications evaded the applied mutation detection techniques of this study.
ISSN:0953-6205
1879-0828
DOI:10.1016/j.ejim.2011.01.003