Loading…

Cardiac myosin activation part 1: From concept to clinic

Abstract Decreased cardiac contractility is a central feature of systolic heart failure and yet we have no effective drugs to improve cardiac contractility. Existing drugs that increase cardiac contractility do so indirectly through signaling cascades and their use is limited by their mechanism-rela...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular and cellular cardiology 2011-10, Vol.51 (4), p.454-461
Main Authors: Malik, Fady I, Morgan, Bradley P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Decreased cardiac contractility is a central feature of systolic heart failure and yet we have no effective drugs to improve cardiac contractility. Existing drugs that increase cardiac contractility do so indirectly through signaling cascades and their use is limited by their mechanism-related adverse effects. Direct activation of the cardiac sarcomere to increase cardiac contractility may provide a means to avoid these limitations. Using a reconstituted version of the cardiac sarcomere, we screened a small molecule library and identified several chemical classes that directly activate cardiac myosin. One compound class has been optimized extensively using an iterative process; omecamtiv mecarbil, a small-molecule, selective, cardiac myosin activator is the most advanced exemplar of this novel mechanistic class. It accelerates the transition of myosin into the force-generating state without affecting cardiac myocyte calcium homeostasis. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Initial clinical studies have demonstrated the translation of this mechanism into humans, and further clinical studies of its use in acute and chronic heart failure are planned. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure. This article is part of a special issue entitled “Key Signaling Molecules in Hypertrophy and Heart Failure.”
ISSN:0022-2828
1095-8584
DOI:10.1016/j.yjmcc.2011.05.006