Loading…
step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico
Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by...
Saved in:
Published in: | International journal of remote sensing 2011-01, Vol.32 (4), p.1139-1164 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53 |
container_end_page | 1164 |
container_issue | 4 |
container_start_page | 1139 |
container_title | International journal of remote sensing |
container_volume | 32 |
creator | Schmook, Birgit Palmer Dickson, Rebecca Sangermano, Florencia Vadjunec, Jacqueline M Eastman, J. Ronald Rogan, John |
description | Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest. |
doi_str_mv | 10.1080/01431160903527413 |
format | article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_miscellaneous_893279280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762120978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</originalsourceid><addsrcrecordid>eNqNkc1qFTEUgAexYK19gK6cjejCac9JJn_gRkrVQksXtYtCIWQyiUbmTq5Jbn8ex2fxxUy5rQiF1tUJh-87OT9Ns4OwiyBhD7CniBwUUEZEj_RZs4mU844pwOf_vF80L3P-AQBcMLHZXOTilt1VyK6dzDx2Nl661NrJ5Bx8sKaEOLfRt-W7a0uKy5qaWh-TyyXf50_jqoY0t-erKvz-Nb9vj911sPFVs-HNlN32Xdxqzj4dfN3_0h2dfD7c_3jUWUahdL6XZkQ6ADWGMW7HUQD3A5dCUi4Hphgy74QUgkqvOBsdk6P36OgwDNIwutW8XdddpvhzVVvTi5Ctm-pELq6yrmPznnPZP0lKRYlQREIl3z1KouAECaja43-hKAVRFcU1alPMOTmvlyksTLrRCPr2kPrBIavz5q68yXX7PpnZhvxXJFT1pKe3s31Yc2GuB1qYq5imURdzM8V0L9HHvhFP6g8sXa5LNV-vTW-iNt9SBc9OSWUBEDhjgv4B2MXLGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762118729</pqid></control><display><type>article</type><title>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</title><source>Taylor and Francis Science and Technology Collection</source><creator>Schmook, Birgit ; Palmer Dickson, Rebecca ; Sangermano, Florencia ; Vadjunec, Jacqueline M ; Eastman, J. Ronald ; Rogan, John</creator><creatorcontrib>Schmook, Birgit ; Palmer Dickson, Rebecca ; Sangermano, Florencia ; Vadjunec, Jacqueline M ; Eastman, J. Ronald ; Rogan, John</creatorcontrib><description>Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.</description><identifier>ISSN: 1366-5901</identifier><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160903527413</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Assessments ; Biological and medical sciences ; Classification ; deciduous forests ; Earth sciences ; Earth, ocean, space ; Ecological monitoring ; Ecology ; Exact sciences and technology ; Forests ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; grasses ; image analysis ; Internal geophysics ; Land cover ; Landsat ; pastures ; Spectra ; Teledetection and vegetation maps ; Tropical forests ; Vegetation</subject><ispartof>International journal of remote sensing, 2011-01, Vol.32 (4), p.1139-1164</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</citedby><cites>FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23942434$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmook, Birgit</creatorcontrib><creatorcontrib>Palmer Dickson, Rebecca</creatorcontrib><creatorcontrib>Sangermano, Florencia</creatorcontrib><creatorcontrib>Vadjunec, Jacqueline M</creatorcontrib><creatorcontrib>Eastman, J. Ronald</creatorcontrib><creatorcontrib>Rogan, John</creatorcontrib><title>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</title><title>International journal of remote sensing</title><description>Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Assessments</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>deciduous forests</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>grasses</subject><subject>image analysis</subject><subject>Internal geophysics</subject><subject>Land cover</subject><subject>Landsat</subject><subject>pastures</subject><subject>Spectra</subject><subject>Teledetection and vegetation maps</subject><subject>Tropical forests</subject><subject>Vegetation</subject><issn>1366-5901</issn><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc1qFTEUgAexYK19gK6cjejCac9JJn_gRkrVQksXtYtCIWQyiUbmTq5Jbn8ex2fxxUy5rQiF1tUJh-87OT9Ns4OwiyBhD7CniBwUUEZEj_RZs4mU844pwOf_vF80L3P-AQBcMLHZXOTilt1VyK6dzDx2Nl661NrJ5Bx8sKaEOLfRt-W7a0uKy5qaWh-TyyXf50_jqoY0t-erKvz-Nb9vj911sPFVs-HNlN32Xdxqzj4dfN3_0h2dfD7c_3jUWUahdL6XZkQ6ADWGMW7HUQD3A5dCUi4Hphgy74QUgkqvOBsdk6P36OgwDNIwutW8XdddpvhzVVvTi5Ctm-pELq6yrmPznnPZP0lKRYlQREIl3z1KouAECaja43-hKAVRFcU1alPMOTmvlyksTLrRCPr2kPrBIavz5q68yXX7PpnZhvxXJFT1pKe3s31Yc2GuB1qYq5imURdzM8V0L9HHvhFP6g8sXa5LNV-vTW-iNt9SBc9OSWUBEDhjgv4B2MXLGw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Schmook, Birgit</creator><creator>Palmer Dickson, Rebecca</creator><creator>Sangermano, Florencia</creator><creator>Vadjunec, Jacqueline M</creator><creator>Eastman, J. Ronald</creator><creator>Rogan, John</creator><general>Taylor & Francis</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20110101</creationdate><title>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</title><author>Schmook, Birgit ; Palmer Dickson, Rebecca ; Sangermano, Florencia ; Vadjunec, Jacqueline M ; Eastman, J. Ronald ; Rogan, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Assessments</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>deciduous forests</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>grasses</topic><topic>image analysis</topic><topic>Internal geophysics</topic><topic>Land cover</topic><topic>Landsat</topic><topic>pastures</topic><topic>Spectra</topic><topic>Teledetection and vegetation maps</topic><topic>Tropical forests</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmook, Birgit</creatorcontrib><creatorcontrib>Palmer Dickson, Rebecca</creatorcontrib><creatorcontrib>Sangermano, Florencia</creatorcontrib><creatorcontrib>Vadjunec, Jacqueline M</creatorcontrib><creatorcontrib>Eastman, J. Ronald</creatorcontrib><creatorcontrib>Rogan, John</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmook, Birgit</au><au>Palmer Dickson, Rebecca</au><au>Sangermano, Florencia</au><au>Vadjunec, Jacqueline M</au><au>Eastman, J. Ronald</au><au>Rogan, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</atitle><jtitle>International journal of remote sensing</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>4</issue><spage>1139</spage><epage>1164</epage><pages>1139-1164</pages><issn>1366-5901</issn><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/01431160903527413</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1366-5901 |
ispartof | International journal of remote sensing, 2011-01, Vol.32 (4), p.1139-1164 |
issn | 1366-5901 0143-1161 1366-5901 |
language | eng |
recordid | cdi_proquest_miscellaneous_893279280 |
source | Taylor and Francis Science and Technology Collection |
subjects | Animal, plant and microbial ecology Applied geophysics Assessments Biological and medical sciences Classification deciduous forests Earth sciences Earth, ocean, space Ecological monitoring Ecology Exact sciences and technology Forests Fundamental and applied biological sciences. Psychology General aspects. Techniques grasses image analysis Internal geophysics Land cover Landsat pastures Spectra Teledetection and vegetation maps Tropical forests Vegetation |
title | step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=step-wise%20land-cover%20classification%20of%20the%20tropical%20forests%20of%20the%20Southern%20Yucat%C3%A1n,%20Mexico&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Schmook,%20Birgit&rft.date=2011-01-01&rft.volume=32&rft.issue=4&rft.spage=1139&rft.epage=1164&rft.pages=1139-1164&rft.issn=1366-5901&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160903527413&rft_dat=%3Cproquest_fao_a%3E1762120978%3C/proquest_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762118729&rft_id=info:pmid/&rfr_iscdi=true |