Loading…

step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico

Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing 2011-01, Vol.32 (4), p.1139-1164
Main Authors: Schmook, Birgit, Palmer Dickson, Rebecca, Sangermano, Florencia, Vadjunec, Jacqueline M, Eastman, J. Ronald, Rogan, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53
cites cdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53
container_end_page 1164
container_issue 4
container_start_page 1139
container_title International journal of remote sensing
container_volume 32
creator Schmook, Birgit
Palmer Dickson, Rebecca
Sangermano, Florencia
Vadjunec, Jacqueline M
Eastman, J. Ronald
Rogan, John
description Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.
doi_str_mv 10.1080/01431160903527413
format article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_miscellaneous_893279280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762120978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</originalsourceid><addsrcrecordid>eNqNkc1qFTEUgAexYK19gK6cjejCac9JJn_gRkrVQksXtYtCIWQyiUbmTq5Jbn8ex2fxxUy5rQiF1tUJh-87OT9Ns4OwiyBhD7CniBwUUEZEj_RZs4mU844pwOf_vF80L3P-AQBcMLHZXOTilt1VyK6dzDx2Nl661NrJ5Bx8sKaEOLfRt-W7a0uKy5qaWh-TyyXf50_jqoY0t-erKvz-Nb9vj911sPFVs-HNlN32Xdxqzj4dfN3_0h2dfD7c_3jUWUahdL6XZkQ6ADWGMW7HUQD3A5dCUi4Hphgy74QUgkqvOBsdk6P36OgwDNIwutW8XdddpvhzVVvTi5Ctm-pELq6yrmPznnPZP0lKRYlQREIl3z1KouAECaja43-hKAVRFcU1alPMOTmvlyksTLrRCPr2kPrBIavz5q68yXX7PpnZhvxXJFT1pKe3s31Yc2GuB1qYq5imURdzM8V0L9HHvhFP6g8sXa5LNV-vTW-iNt9SBc9OSWUBEDhjgv4B2MXLGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762118729</pqid></control><display><type>article</type><title>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</title><source>Taylor and Francis Science and Technology Collection</source><creator>Schmook, Birgit ; Palmer Dickson, Rebecca ; Sangermano, Florencia ; Vadjunec, Jacqueline M ; Eastman, J. Ronald ; Rogan, John</creator><creatorcontrib>Schmook, Birgit ; Palmer Dickson, Rebecca ; Sangermano, Florencia ; Vadjunec, Jacqueline M ; Eastman, J. Ronald ; Rogan, John</creatorcontrib><description>Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.</description><identifier>ISSN: 1366-5901</identifier><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160903527413</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Assessments ; Biological and medical sciences ; Classification ; deciduous forests ; Earth sciences ; Earth, ocean, space ; Ecological monitoring ; Ecology ; Exact sciences and technology ; Forests ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; grasses ; image analysis ; Internal geophysics ; Land cover ; Landsat ; pastures ; Spectra ; Teledetection and vegetation maps ; Tropical forests ; Vegetation</subject><ispartof>International journal of remote sensing, 2011-01, Vol.32 (4), p.1139-1164</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</citedby><cites>FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23942434$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmook, Birgit</creatorcontrib><creatorcontrib>Palmer Dickson, Rebecca</creatorcontrib><creatorcontrib>Sangermano, Florencia</creatorcontrib><creatorcontrib>Vadjunec, Jacqueline M</creatorcontrib><creatorcontrib>Eastman, J. Ronald</creatorcontrib><creatorcontrib>Rogan, John</creatorcontrib><title>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</title><title>International journal of remote sensing</title><description>Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Assessments</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>deciduous forests</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>grasses</subject><subject>image analysis</subject><subject>Internal geophysics</subject><subject>Land cover</subject><subject>Landsat</subject><subject>pastures</subject><subject>Spectra</subject><subject>Teledetection and vegetation maps</subject><subject>Tropical forests</subject><subject>Vegetation</subject><issn>1366-5901</issn><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc1qFTEUgAexYK19gK6cjejCac9JJn_gRkrVQksXtYtCIWQyiUbmTq5Jbn8ex2fxxUy5rQiF1tUJh-87OT9Ns4OwiyBhD7CniBwUUEZEj_RZs4mU844pwOf_vF80L3P-AQBcMLHZXOTilt1VyK6dzDx2Nl661NrJ5Bx8sKaEOLfRt-W7a0uKy5qaWh-TyyXf50_jqoY0t-erKvz-Nb9vj911sPFVs-HNlN32Xdxqzj4dfN3_0h2dfD7c_3jUWUahdL6XZkQ6ADWGMW7HUQD3A5dCUi4Hphgy74QUgkqvOBsdk6P36OgwDNIwutW8XdddpvhzVVvTi5Ctm-pELq6yrmPznnPZP0lKRYlQREIl3z1KouAECaja43-hKAVRFcU1alPMOTmvlyksTLrRCPr2kPrBIavz5q68yXX7PpnZhvxXJFT1pKe3s31Yc2GuB1qYq5imURdzM8V0L9HHvhFP6g8sXa5LNV-vTW-iNt9SBc9OSWUBEDhjgv4B2MXLGw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Schmook, Birgit</creator><creator>Palmer Dickson, Rebecca</creator><creator>Sangermano, Florencia</creator><creator>Vadjunec, Jacqueline M</creator><creator>Eastman, J. Ronald</creator><creator>Rogan, John</creator><general>Taylor &amp; Francis</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20110101</creationdate><title>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</title><author>Schmook, Birgit ; Palmer Dickson, Rebecca ; Sangermano, Florencia ; Vadjunec, Jacqueline M ; Eastman, J. Ronald ; Rogan, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Assessments</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>deciduous forests</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>grasses</topic><topic>image analysis</topic><topic>Internal geophysics</topic><topic>Land cover</topic><topic>Landsat</topic><topic>pastures</topic><topic>Spectra</topic><topic>Teledetection and vegetation maps</topic><topic>Tropical forests</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmook, Birgit</creatorcontrib><creatorcontrib>Palmer Dickson, Rebecca</creatorcontrib><creatorcontrib>Sangermano, Florencia</creatorcontrib><creatorcontrib>Vadjunec, Jacqueline M</creatorcontrib><creatorcontrib>Eastman, J. Ronald</creatorcontrib><creatorcontrib>Rogan, John</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmook, Birgit</au><au>Palmer Dickson, Rebecca</au><au>Sangermano, Florencia</au><au>Vadjunec, Jacqueline M</au><au>Eastman, J. Ronald</au><au>Rogan, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico</atitle><jtitle>International journal of remote sensing</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>4</issue><spage>1139</spage><epage>1164</epage><pages>1139-1164</pages><issn>1366-5901</issn><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>Analysis of land-cover change in the seasonal tropical forests of the Southern Yucatán, Mexico presents a number of significant challenges for the fine-scale land-cover information required of land-change science. Subtle variation in mature forest types across the regional ecocline is compounded by vegetation transitions following agricultural land uses. Such complex mapping environments require innovation in multispectral classification methodologies. This research presents an application of a step-wise maximum likelihood/In-Process Classification Assessment (IPCA) procedure. This hybrid supervised and unsupervised classification methodology allows for exploration of underlying characteristics of Landsat Thematic Mapper (TM) imagery in tropical environments. Once spectrally separable classes have been identified, field data then determine the ecological definition of vegetation types with special attention paid to areas of unknown or mixed classes. A post-field assessment re-classification using the Dempster–Shafer method reduced the original 25 spectral classes to 14 ecologically distinctive classes, providing the fine-tuned land-cover distinctions that are required for both environmental and socioeconomic research questions. The overall map accuracy was 87% with an average per-class accuracy of 86%. Per-class accuracy ranged from as low as 45% for pasture grass to a high of 100% for tall-stature evergreen upland forest, low and medium-stature semi-deciduous upland forest and deciduous forest.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01431160903527413</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1366-5901
ispartof International journal of remote sensing, 2011-01, Vol.32 (4), p.1139-1164
issn 1366-5901
0143-1161
1366-5901
language eng
recordid cdi_proquest_miscellaneous_893279280
source Taylor and Francis Science and Technology Collection
subjects Animal, plant and microbial ecology
Applied geophysics
Assessments
Biological and medical sciences
Classification
deciduous forests
Earth sciences
Earth, ocean, space
Ecological monitoring
Ecology
Exact sciences and technology
Forests
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
grasses
image analysis
Internal geophysics
Land cover
Landsat
pastures
Spectra
Teledetection and vegetation maps
Tropical forests
Vegetation
title step-wise land-cover classification of the tropical forests of the Southern Yucatán, Mexico
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=step-wise%20land-cover%20classification%20of%20the%20tropical%20forests%20of%20the%20Southern%20Yucat%C3%A1n,%20Mexico&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Schmook,%20Birgit&rft.date=2011-01-01&rft.volume=32&rft.issue=4&rft.spage=1139&rft.epage=1164&rft.pages=1139-1164&rft.issn=1366-5901&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160903527413&rft_dat=%3Cproquest_fao_a%3E1762120978%3C/proquest_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-f48ad13b03aa556cdd706fb6878368b59515fe787738f965de58dff1e3bbb8a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762118729&rft_id=info:pmid/&rfr_iscdi=true