Loading…
Next day load curve forecasting using hybrid correction method
This work presents an approach for short-term load forecast problem, based on hybrid correction method. Conventional artificial neural network based short-term load forecasting techniques have limitations especially when weather changes are seasonal. Hence, we propose a load correction method by usi...
Saved in:
Published in: | IEEE transactions on power systems 2005-02, Vol.20 (1), p.102-109 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents an approach for short-term load forecast problem, based on hybrid correction method. Conventional artificial neural network based short-term load forecasting techniques have limitations especially when weather changes are seasonal. Hence, we propose a load correction method by using a fuzzy logic approach in which a fuzzy logic, based on similar days, corrects the neural network output to obtain the next day forecasted load. An Euclidean norm with weighted factors is used for the selection of similar days. The load correction method for the generation of new similar days is also proposed. The neural network has an advantage of dealing with the nonlinear parts of the forecasted load curves, whereas, the fuzzy rules are constructed based on the expert knowledge. Therefore, by combining these two methods, the test results show that the proposed forecasting method could provide a considerable improvement of the forecasting accuracy especially as it shows how to reduce neural network forecast error over the test period by 23% through the application of a fuzzy logic correction. The suitability of the proposed approach is illustrated through an application to actual load data of the Okinawa Electric Power Company in Japan. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2004.831256 |