Loading…
Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization
Liquid crystal (LC) lenses with a circularly hole-patterned electrode possess excellent characteristics in optical performance, especially for the capability of tunable focal lengths. But, non-uniformly symmetrical electric fields in LC lenses usually induce disclination lines when operating. In gen...
Saved in:
Published in: | Optics express 2011-08, Vol.19 (16), p.14999-15008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liquid crystal (LC) lenses with a circularly hole-patterned electrode possess excellent characteristics in optical performance, especially for the capability of tunable focal lengths. But, non-uniformly symmetrical electric fields in LC lenses usually induce disclination lines when operating. In general, the occurrence of disclination lines not only degrades their optical capability such as imaging performance, but also spends more time for tuning focal lengths. In this paper, we use a way of polymer stabilization to successfully prevent the disclination lines in LC lenses. Even arbitrarily adjusting the applied voltages in LC lenses, it seems no occurrence of disclination lines again. In addition, we compare the basic optical performance for LC lenses with or without polymer stabilization. From experimental results, it shows that they almost have the same optical performance. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.19.014999 |