Loading…

A Study To Control Chemical Reactions Using Si:2p Core Ionization: Site-Specific Fragmentation

In an aim to create a “sharp” molecular knife, we have studied site-specific fragmentation caused by Si:2p core photoionization of bridged trihalosilyltrimethylsilyl molecules in the vapor phase. Highly site-specific bond dissociation has been found to occur around the core-ionized Si site in some o...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2011-08, Vol.115 (32), p.8822-8831
Main Authors: Nagaoka, Shin-ichi, Fukuzawa, Hironobu, Prümper, Georg, Takemoto, Mai, Takahashi, Osamu, Yamaguchi, Katsuhiro, Kakiuchi, Takuhiro, Tabayashi, Kiyohiko, Suzuki, Isao H, Harries, James R, Tamenori, Yusuke, Ueda, Kiyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In an aim to create a “sharp” molecular knife, we have studied site-specific fragmentation caused by Si:2p core photoionization of bridged trihalosilyltrimethylsilyl molecules in the vapor phase. Highly site-specific bond dissociation has been found to occur around the core-ionized Si site in some of the molecules studied. The site specificity in fragmentation and the 2p binding energy difference between the two Si sites depend in similar ways on the intersite bridge and the electronegativities of the included halogen atoms. The present experimental and computational results show that for efficient “cutting” the following conditions for the two atomic sites to be separated by the knife should be satisfied. First, the sites should be located far from each other and connected by a chain of saturated bonds so that intersite electron migration can be reduced. Second, the chemical environments of the atomic sites should be as different as possible.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp203664r