Loading…

Linbo3 - A new material for artificial photosynthesis

The solid-gas phase photo-assisted reduction of carbon dioxide (artificial photosynthesis) was performed using ferroelectric lithium niobate and titanium dioxide. Illumination with a high-pressure mercury lamp and visible sunlight showed that lithium niobate achieved unexpectedly high conversion of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-09, Vol.58 (9), p.1988-1993
Main Authors: Stock, M., Dunn, S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1993
container_issue 9
container_start_page 1988
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 58
creator Stock, M.
Dunn, S.
description The solid-gas phase photo-assisted reduction of carbon dioxide (artificial photosynthesis) was performed using ferroelectric lithium niobate and titanium dioxide. Illumination with a high-pressure mercury lamp and visible sunlight showed that lithium niobate achieved unexpectedly high conversion of CO 2 to products despite the low levels of band-gap light available. The high reaction efficiency of lithium niobate is explained by its strong remnant polarization (70 μC/cm 2 ), allowing a longer lifetime of photo-induced carriers as well as an alternative reaction pathway.
doi_str_mv 10.1109/TUFFC.2011.2042
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_893980455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6020873</ieee_id><sourcerecordid>2464928651</sourcerecordid><originalsourceid>FETCH-LOGICAL-i353t-f054bcf1b993c1e04886688ce329dd15287b6ee581861e3184acbb7d392634dd3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgiq3VswdBFkE8bc3ka5NjKVaFgpf2vGSzWZqyHzXZRfrvTWlV8DLDMA_DyyB0C3gKgNXzar1YzKcEA8TCyBkaAyc8lYrzczTGUvKUYsAjdBXCFmNgTJFLNCKgaEapGCO-dG3R0SRNZklrv5JG99Y7XSdV5xPte1c5cxh3m67vwr7tNza4cI0uKl0He3PqE7RevKzmb-ny4_V9PlumjnLapxXmrDAVFEpRAxYzKYWQ0lhKVFnGpDIrhLVcghRgKUimTVFkJVVEUFaWdIKejnd3vvscbOjzxgVj61q3thtCLhVVEjPOo3z4J7fd4NsY7oAEx0xlEd2f0FA0tsx33jXa7_Ofd0TweAI6GF1XXrfGhT_HOFCWQXR3R-estb9rgQmW8c43-zZ0qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893650497</pqid></control><display><type>article</type><title>Linbo3 - A new material for artificial photosynthesis</title><source>IEEE Xplore (Online service)</source><creator>Stock, M. ; Dunn, S.</creator><creatorcontrib>Stock, M. ; Dunn, S.</creatorcontrib><description>The solid-gas phase photo-assisted reduction of carbon dioxide (artificial photosynthesis) was performed using ferroelectric lithium niobate and titanium dioxide. Illumination with a high-pressure mercury lamp and visible sunlight showed that lithium niobate achieved unexpectedly high conversion of CO 2 to products despite the low levels of band-gap light available. The high reaction efficiency of lithium niobate is explained by its strong remnant polarization (70 μC/cm 2 ), allowing a longer lifetime of photo-induced carriers as well as an alternative reaction pathway.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.2042</identifier><identifier>PMID: 21937336</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; Catalysis ; Charge carrier processes ; Chemistry ; Exact sciences and technology ; Formaldehyde - metabolism ; Formates - metabolism ; General and physical chemistry ; Green Chemistry Technology ; Lithium niobate ; Materials ; Microscopy, Electron, Scanning ; Niobium - chemistry ; Oxidation ; Oxides - chemistry ; Photonic band gap ; Photosynthesis ; Powders ; Radiation effects ; Sunlight ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Titanium - chemistry ; Ultraviolet Rays</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-09, Vol.58 (9), p.1988-1993</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6020873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24513471$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21937336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stock, M.</creatorcontrib><creatorcontrib>Dunn, S.</creatorcontrib><title>Linbo3 - A new material for artificial photosynthesis</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>The solid-gas phase photo-assisted reduction of carbon dioxide (artificial photosynthesis) was performed using ferroelectric lithium niobate and titanium dioxide. Illumination with a high-pressure mercury lamp and visible sunlight showed that lithium niobate achieved unexpectedly high conversion of CO 2 to products despite the low levels of band-gap light available. The high reaction efficiency of lithium niobate is explained by its strong remnant polarization (70 μC/cm 2 ), allowing a longer lifetime of photo-induced carriers as well as an alternative reaction pathway.</description><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>Catalysis</subject><subject>Charge carrier processes</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Formaldehyde - metabolism</subject><subject>Formates - metabolism</subject><subject>General and physical chemistry</subject><subject>Green Chemistry Technology</subject><subject>Lithium niobate</subject><subject>Materials</subject><subject>Microscopy, Electron, Scanning</subject><subject>Niobium - chemistry</subject><subject>Oxidation</subject><subject>Oxides - chemistry</subject><subject>Photonic band gap</subject><subject>Photosynthesis</subject><subject>Powders</subject><subject>Radiation effects</subject><subject>Sunlight</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Titanium - chemistry</subject><subject>Ultraviolet Rays</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgiq3VswdBFkE8bc3ka5NjKVaFgpf2vGSzWZqyHzXZRfrvTWlV8DLDMA_DyyB0C3gKgNXzar1YzKcEA8TCyBkaAyc8lYrzczTGUvKUYsAjdBXCFmNgTJFLNCKgaEapGCO-dG3R0SRNZklrv5JG99Y7XSdV5xPte1c5cxh3m67vwr7tNza4cI0uKl0He3PqE7RevKzmb-ny4_V9PlumjnLapxXmrDAVFEpRAxYzKYWQ0lhKVFnGpDIrhLVcghRgKUimTVFkJVVEUFaWdIKejnd3vvscbOjzxgVj61q3thtCLhVVEjPOo3z4J7fd4NsY7oAEx0xlEd2f0FA0tsx33jXa7_Ofd0TweAI6GF1XXrfGhT_HOFCWQXR3R-estb9rgQmW8c43-zZ0qg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Stock, M.</creator><creator>Dunn, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110901</creationdate><title>Linbo3 - A new material for artificial photosynthesis</title><author>Stock, M. ; Dunn, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i353t-f054bcf1b993c1e04886688ce329dd15287b6ee581861e3184acbb7d392634dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>Catalysis</topic><topic>Charge carrier processes</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Formaldehyde - metabolism</topic><topic>Formates - metabolism</topic><topic>General and physical chemistry</topic><topic>Green Chemistry Technology</topic><topic>Lithium niobate</topic><topic>Materials</topic><topic>Microscopy, Electron, Scanning</topic><topic>Niobium - chemistry</topic><topic>Oxidation</topic><topic>Oxides - chemistry</topic><topic>Photonic band gap</topic><topic>Photosynthesis</topic><topic>Powders</topic><topic>Radiation effects</topic><topic>Sunlight</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Titanium - chemistry</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stock, M.</creatorcontrib><creatorcontrib>Dunn, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stock, M.</au><au>Dunn, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linbo3 - A new material for artificial photosynthesis</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>58</volume><issue>9</issue><spage>1988</spage><epage>1993</epage><pages>1988-1993</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>The solid-gas phase photo-assisted reduction of carbon dioxide (artificial photosynthesis) was performed using ferroelectric lithium niobate and titanium dioxide. Illumination with a high-pressure mercury lamp and visible sunlight showed that lithium niobate achieved unexpectedly high conversion of CO 2 to products despite the low levels of band-gap light available. The high reaction efficiency of lithium niobate is explained by its strong remnant polarization (70 μC/cm 2 ), allowing a longer lifetime of photo-induced carriers as well as an alternative reaction pathway.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21937336</pmid><doi>10.1109/TUFFC.2011.2042</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-09, Vol.58 (9), p.1988-1993
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_893980455
source IEEE Xplore (Online service)
subjects Carbon Dioxide - chemistry
Carbon Dioxide - metabolism
Catalysis
Charge carrier processes
Chemistry
Exact sciences and technology
Formaldehyde - metabolism
Formates - metabolism
General and physical chemistry
Green Chemistry Technology
Lithium niobate
Materials
Microscopy, Electron, Scanning
Niobium - chemistry
Oxidation
Oxides - chemistry
Photonic band gap
Photosynthesis
Powders
Radiation effects
Sunlight
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Titanium - chemistry
Ultraviolet Rays
title Linbo3 - A new material for artificial photosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linbo3%20-%20A%20new%20material%20for%20artificial%20photosynthesis&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Stock,%20M.&rft.date=2011-09-01&rft.volume=58&rft.issue=9&rft.spage=1988&rft.epage=1993&rft.pages=1988-1993&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.2042&rft_dat=%3Cproquest_ieee_%3E2464928651%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i353t-f054bcf1b993c1e04886688ce329dd15287b6ee581861e3184acbb7d392634dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=893650497&rft_id=info:pmid/21937336&rft_ieee_id=6020873&rfr_iscdi=true