Loading…

A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol

Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzyma...

Full description

Saved in:
Bibliographic Details
Published in:Analytical biochemistry 2011-12, Vol.419 (1), p.26-32
Main Authors: Hassan, Rabeay Y.A., Bilitewski, Ursula
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3
cites cdi_FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3
container_end_page 32
container_issue 1
container_start_page 26
container_title Analytical biochemistry
container_volume 419
creator Hassan, Rabeay Y.A.
Bilitewski, Ursula
description Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S. cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.
doi_str_mv 10.1016/j.ab.2011.07.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_895856925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003269711004957</els_id><sourcerecordid>1028075529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3</originalsourceid><addsrcrecordid>eNp9kb2PEzEQxS0E4sJBTwXuoGAX27v22nSniC_pJAq42hrbs8Rhsw725qT89zgk0EE1M5rfvJHeI-Q5Zy1nXL3dtuBawThv2dAyIR-QFWdGNaxj5iFZMca6RigzXJEnpWxZBXupHpMrwbXqe6NW5McNvY_g4hSXI4VS4EjHlOka5hADUJhc9DAX6qBgoGmmywYpTuiXfBpy3Y2Y6Q5DhKUeijeqCdFvppTTfoNzmuIcLt1T8miEqeCzS70mdx_ef1t_am6_fPy8vrltvOT90mjTd6bXne9DEN0oELtOCGE0DhK4VM51UnIM2gH3ruulG0Ylhx5EQDbU7TV5ddbd5_TzgGWxu1g8ThPMmA7FaiO1VEbISr7-L8mZ0GyQUpiKsjPqcyol42j3Oe4gHytkT2HYrQVnT2FYNlj2W_3FRf3gqkF_D_64X4GXZ2CEZOF7jsXefa0KqgbHtJAn4t2ZwOrXfcRsi484-2p3rhnYkOK___8C0f6iTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028075529</pqid></control><display><type>article</type><title>A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol</title><source>Elsevier</source><creator>Hassan, Rabeay Y.A. ; Bilitewski, Ursula</creator><creatorcontrib>Hassan, Rabeay Y.A. ; Bilitewski, Ursula</creatorcontrib><description>Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S. cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.</description><identifier>ISSN: 0003-2697</identifier><identifier>EISSN: 1096-0309</identifier><identifier>DOI: 10.1016/j.ab.2011.07.025</identifier><identifier>PMID: 21864496</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2,6-Dichloroindophenol - metabolism ; Candida albicans ; Candida albicans - growth &amp; development ; Candida albicans - metabolism ; Candida glabrata ; Candida glabrata - growth &amp; development ; Candida glabrata - metabolism ; carbon ; Catalysis ; Color ; Complex I activity ; complexing ; Electrochemistry ; electron transfer ; Electron Transport - drug effects ; electron transport chain ; Enzyme Activation ; enzyme activity ; Fungal Proteins ; galactose ; Galactose - metabolism ; glucose ; Glucose - metabolism ; Metabolic activation ; Microbial Viability ; Microbiological Techniques ; NAD (coenzyme) ; NAD - metabolism ; NADH Dehydrogenase - metabolism ; NADH dehydrogenases ; oxidation ; Oxidation-Reduction ; Oxygen - metabolism ; pathogens ; Respiratory chain inhibitors ; rotenone ; Rotenone - pharmacology ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Spectrophotometry ; viability ; Yeasts</subject><ispartof>Analytical biochemistry, 2011-12, Vol.419 (1), p.26-32</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3</citedby><cites>FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21864496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassan, Rabeay Y.A.</creatorcontrib><creatorcontrib>Bilitewski, Ursula</creatorcontrib><title>A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol</title><title>Analytical biochemistry</title><addtitle>Anal Biochem</addtitle><description>Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S. cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.</description><subject>2,6-Dichloroindophenol - metabolism</subject><subject>Candida albicans</subject><subject>Candida albicans - growth &amp; development</subject><subject>Candida albicans - metabolism</subject><subject>Candida glabrata</subject><subject>Candida glabrata - growth &amp; development</subject><subject>Candida glabrata - metabolism</subject><subject>carbon</subject><subject>Catalysis</subject><subject>Color</subject><subject>Complex I activity</subject><subject>complexing</subject><subject>Electrochemistry</subject><subject>electron transfer</subject><subject>Electron Transport - drug effects</subject><subject>electron transport chain</subject><subject>Enzyme Activation</subject><subject>enzyme activity</subject><subject>Fungal Proteins</subject><subject>galactose</subject><subject>Galactose - metabolism</subject><subject>glucose</subject><subject>Glucose - metabolism</subject><subject>Metabolic activation</subject><subject>Microbial Viability</subject><subject>Microbiological Techniques</subject><subject>NAD (coenzyme)</subject><subject>NAD - metabolism</subject><subject>NADH Dehydrogenase - metabolism</subject><subject>NADH dehydrogenases</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - metabolism</subject><subject>pathogens</subject><subject>Respiratory chain inhibitors</subject><subject>rotenone</subject><subject>Rotenone - pharmacology</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Spectrophotometry</subject><subject>viability</subject><subject>Yeasts</subject><issn>0003-2697</issn><issn>1096-0309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kb2PEzEQxS0E4sJBTwXuoGAX27v22nSniC_pJAq42hrbs8Rhsw725qT89zgk0EE1M5rfvJHeI-Q5Zy1nXL3dtuBawThv2dAyIR-QFWdGNaxj5iFZMca6RigzXJEnpWxZBXupHpMrwbXqe6NW5McNvY_g4hSXI4VS4EjHlOka5hADUJhc9DAX6qBgoGmmywYpTuiXfBpy3Y2Y6Q5DhKUeijeqCdFvppTTfoNzmuIcLt1T8miEqeCzS70mdx_ef1t_am6_fPy8vrltvOT90mjTd6bXne9DEN0oELtOCGE0DhK4VM51UnIM2gH3ruulG0Ylhx5EQDbU7TV5ddbd5_TzgGWxu1g8ThPMmA7FaiO1VEbISr7-L8mZ0GyQUpiKsjPqcyol42j3Oe4gHytkT2HYrQVnT2FYNlj2W_3FRf3gqkF_D_64X4GXZ2CEZOF7jsXefa0KqgbHtJAn4t2ZwOrXfcRsi484-2p3rhnYkOK___8C0f6iTw</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Hassan, Rabeay Y.A.</creator><creator>Bilitewski, Ursula</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol</title><author>Hassan, Rabeay Y.A. ; Bilitewski, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2,6-Dichloroindophenol - metabolism</topic><topic>Candida albicans</topic><topic>Candida albicans - growth &amp; development</topic><topic>Candida albicans - metabolism</topic><topic>Candida glabrata</topic><topic>Candida glabrata - growth &amp; development</topic><topic>Candida glabrata - metabolism</topic><topic>carbon</topic><topic>Catalysis</topic><topic>Color</topic><topic>Complex I activity</topic><topic>complexing</topic><topic>Electrochemistry</topic><topic>electron transfer</topic><topic>Electron Transport - drug effects</topic><topic>electron transport chain</topic><topic>Enzyme Activation</topic><topic>enzyme activity</topic><topic>Fungal Proteins</topic><topic>galactose</topic><topic>Galactose - metabolism</topic><topic>glucose</topic><topic>Glucose - metabolism</topic><topic>Metabolic activation</topic><topic>Microbial Viability</topic><topic>Microbiological Techniques</topic><topic>NAD (coenzyme)</topic><topic>NAD - metabolism</topic><topic>NADH Dehydrogenase - metabolism</topic><topic>NADH dehydrogenases</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - metabolism</topic><topic>pathogens</topic><topic>Respiratory chain inhibitors</topic><topic>rotenone</topic><topic>Rotenone - pharmacology</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Spectrophotometry</topic><topic>viability</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Rabeay Y.A.</creatorcontrib><creatorcontrib>Bilitewski, Ursula</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Rabeay Y.A.</au><au>Bilitewski, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol</atitle><jtitle>Analytical biochemistry</jtitle><addtitle>Anal Biochem</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>419</volume><issue>1</issue><spage>26</spage><epage>32</epage><pages>26-32</pages><issn>0003-2697</issn><eissn>1096-0309</eissn><abstract>Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S. cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21864496</pmid><doi>10.1016/j.ab.2011.07.025</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2697
ispartof Analytical biochemistry, 2011-12, Vol.419 (1), p.26-32
issn 0003-2697
1096-0309
language eng
recordid cdi_proquest_miscellaneous_895856925
source Elsevier
subjects 2,6-Dichloroindophenol - metabolism
Candida albicans
Candida albicans - growth & development
Candida albicans - metabolism
Candida glabrata
Candida glabrata - growth & development
Candida glabrata - metabolism
carbon
Catalysis
Color
Complex I activity
complexing
Electrochemistry
electron transfer
Electron Transport - drug effects
electron transport chain
Enzyme Activation
enzyme activity
Fungal Proteins
galactose
Galactose - metabolism
glucose
Glucose - metabolism
Metabolic activation
Microbial Viability
Microbiological Techniques
NAD (coenzyme)
NAD - metabolism
NADH Dehydrogenase - metabolism
NADH dehydrogenases
oxidation
Oxidation-Reduction
Oxygen - metabolism
pathogens
Respiratory chain inhibitors
rotenone
Rotenone - pharmacology
Saccharomyces cerevisiae
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Spectrophotometry
viability
Yeasts
title A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20viability%20assay%20for%20Candida%20albicans%20based%20on%20the%20electron%20transfer%20mediator%202,6-dichlorophenolindophenol&rft.jtitle=Analytical%20biochemistry&rft.au=Hassan,%20Rabeay%20Y.A.&rft.date=2011-12-01&rft.volume=419&rft.issue=1&rft.spage=26&rft.epage=32&rft.pages=26-32&rft.issn=0003-2697&rft.eissn=1096-0309&rft_id=info:doi/10.1016/j.ab.2011.07.025&rft_dat=%3Cproquest_cross%3E1028075529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-89439483c4dd23f2ee3322298e75a156bb3551ed8ba1cb345b7f6574a2de07bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1028075529&rft_id=info:pmid/21864496&rfr_iscdi=true