Loading…
A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation
We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's d...
Saved in:
Published in: | Journal of difference equations and applications 2011-05, Vol.17 (5), p.779-794 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3 |
container_end_page | 794 |
container_issue | 5 |
container_start_page | 779 |
container_title | Journal of difference equations and applications |
container_volume | 17 |
creator | Bashier, E.B.M. Patidar, K.C. |
description | We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order
, where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example. |
doi_str_mv | 10.1080/10236190903305450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896168731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671257620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtZwd3RH-Ct8aKX1nx0vsDLsvgFC170HGqSimbJdGaTNDo3f7oZRzy46J5SlXqeCuEdhqeUvKREk1eUMC6pIYZwTsQsyIPhnArJJ0EZOet1n08d0I-Gi1pvCGH9Xp4PPy7Hii4vfsrFYxlDbA39mPdYoOVjv8SGo48hYMHF4bjD9jX7MfQhjDUuX9YEJR3GbrS1bLvsMUHvocA2p-iOVYuQ_iz51eDtCi3m5fHwMECq-OT3uRk-v33z6er9dP3x3Yery-vJzYq0iSsRqAYIYuuNDAEMgVl65JxtBQPJnBaeKCkdOqLQeYOz8Mwpo4kxGPhmeH7auy_5dsXa7C5WhynBgnmtVhtJpVac3k9qw404spvhxX9JKhVlQklGOvrsL_Qmr2XpP7ZaGsoNk3OH6AlyJddaMNh9iTsoB0uJPcZs78TcHXVy4tIj2cG3XJK3DQ4pl1BgcbHetWz73rr5-l6T__vhnyUcwS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869139264</pqid></control><display><type>article</type><title>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Bashier, E.B.M. ; Patidar, K.C.</creator><creatorcontrib>Bashier, E.B.M. ; Patidar, K.C.</creatorcontrib><description>We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order
, where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.</description><identifier>ISSN: 1023-6198</identifier><identifier>EISSN: 1563-5120</identifier><identifier>DOI: 10.1080/10236190903305450</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Convergence ; Delay ; delay parabolic partial differential equation ; Difference equations ; Finite difference method ; fitted operator finite difference methods ; Mathematical analysis ; Mathematical models ; Operators ; Parabolas ; Partial differential equations ; singular perturbations ; stability</subject><ispartof>Journal of difference equations and applications, 2011-05, Vol.17 (5), p.779-794</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>Copyright Taylor & Francis Ltd. May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</citedby><cites>FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bashier, E.B.M.</creatorcontrib><creatorcontrib>Patidar, K.C.</creatorcontrib><title>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</title><title>Journal of difference equations and applications</title><description>We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order
, where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.</description><subject>Convergence</subject><subject>Delay</subject><subject>delay parabolic partial differential equation</subject><subject>Difference equations</subject><subject>Finite difference method</subject><subject>fitted operator finite difference methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Parabolas</subject><subject>Partial differential equations</subject><subject>singular perturbations</subject><subject>stability</subject><issn>1023-6198</issn><issn>1563-5120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhhtZwd3RH-Ct8aKX1nx0vsDLsvgFC170HGqSimbJdGaTNDo3f7oZRzy46J5SlXqeCuEdhqeUvKREk1eUMC6pIYZwTsQsyIPhnArJJ0EZOet1n08d0I-Gi1pvCGH9Xp4PPy7Hii4vfsrFYxlDbA39mPdYoOVjv8SGo48hYMHF4bjD9jX7MfQhjDUuX9YEJR3GbrS1bLvsMUHvocA2p-iOVYuQ_iz51eDtCi3m5fHwMECq-OT3uRk-v33z6er9dP3x3Yery-vJzYq0iSsRqAYIYuuNDAEMgVl65JxtBQPJnBaeKCkdOqLQeYOz8Mwpo4kxGPhmeH7auy_5dsXa7C5WhynBgnmtVhtJpVac3k9qw404spvhxX9JKhVlQklGOvrsL_Qmr2XpP7ZaGsoNk3OH6AlyJddaMNh9iTsoB0uJPcZs78TcHXVy4tIj2cG3XJK3DQ4pl1BgcbHetWz73rr5-l6T__vhnyUcwS0</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Bashier, E.B.M.</creator><creator>Patidar, K.C.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201105</creationdate><title>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</title><author>Bashier, E.B.M. ; Patidar, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Convergence</topic><topic>Delay</topic><topic>delay parabolic partial differential equation</topic><topic>Difference equations</topic><topic>Finite difference method</topic><topic>fitted operator finite difference methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Parabolas</topic><topic>Partial differential equations</topic><topic>singular perturbations</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashier, E.B.M.</creatorcontrib><creatorcontrib>Patidar, K.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of difference equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashier, E.B.M.</au><au>Patidar, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</atitle><jtitle>Journal of difference equations and applications</jtitle><date>2011-05</date><risdate>2011</risdate><volume>17</volume><issue>5</issue><spage>779</spage><epage>794</epage><pages>779-794</pages><issn>1023-6198</issn><eissn>1563-5120</eissn><abstract>We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order
, where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/10236190903305450</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-6198 |
ispartof | Journal of difference equations and applications, 2011-05, Vol.17 (5), p.779-794 |
issn | 1023-6198 1563-5120 |
language | eng |
recordid | cdi_proquest_miscellaneous_896168731 |
source | Taylor and Francis Science and Technology Collection |
subjects | Convergence Delay delay parabolic partial differential equation Difference equations Finite difference method fitted operator finite difference methods Mathematical analysis Mathematical models Operators Parabolas Partial differential equations singular perturbations stability |
title | A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20fitted%20operator%20finite%20difference%20method%20for%20a%20singularly%20perturbed%20delay%20parabolic%20partial%20differential%20equation&rft.jtitle=Journal%20of%20difference%20equations%20and%20applications&rft.au=Bashier,%20E.B.M.&rft.date=2011-05&rft.volume=17&rft.issue=5&rft.spage=779&rft.epage=794&rft.pages=779-794&rft.issn=1023-6198&rft.eissn=1563-5120&rft_id=info:doi/10.1080/10236190903305450&rft_dat=%3Cproquest_cross%3E1671257620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869139264&rft_id=info:pmid/&rfr_iscdi=true |