Loading…

A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation

We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of difference equations and applications 2011-05, Vol.17 (5), p.779-794
Main Authors: Bashier, E.B.M., Patidar, K.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3
cites cdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3
container_end_page 794
container_issue 5
container_start_page 779
container_title Journal of difference equations and applications
container_volume 17
creator Bashier, E.B.M.
Patidar, K.C.
description We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order , where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.
doi_str_mv 10.1080/10236190903305450
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896168731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671257620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtZwd3RH-Ct8aKX1nx0vsDLsvgFC170HGqSimbJdGaTNDo3f7oZRzy46J5SlXqeCuEdhqeUvKREk1eUMC6pIYZwTsQsyIPhnArJJ0EZOet1n08d0I-Gi1pvCGH9Xp4PPy7Hii4vfsrFYxlDbA39mPdYoOVjv8SGo48hYMHF4bjD9jX7MfQhjDUuX9YEJR3GbrS1bLvsMUHvocA2p-iOVYuQ_iz51eDtCi3m5fHwMECq-OT3uRk-v33z6er9dP3x3Yery-vJzYq0iSsRqAYIYuuNDAEMgVl65JxtBQPJnBaeKCkdOqLQeYOz8Mwpo4kxGPhmeH7auy_5dsXa7C5WhynBgnmtVhtJpVac3k9qw404spvhxX9JKhVlQklGOvrsL_Qmr2XpP7ZaGsoNk3OH6AlyJddaMNh9iTsoB0uJPcZs78TcHXVy4tIj2cG3XJK3DQ4pl1BgcbHetWz73rr5-l6T__vhnyUcwS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869139264</pqid></control><display><type>article</type><title>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Bashier, E.B.M. ; Patidar, K.C.</creator><creatorcontrib>Bashier, E.B.M. ; Patidar, K.C.</creatorcontrib><description>We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order , where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.</description><identifier>ISSN: 1023-6198</identifier><identifier>EISSN: 1563-5120</identifier><identifier>DOI: 10.1080/10236190903305450</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Convergence ; Delay ; delay parabolic partial differential equation ; Difference equations ; Finite difference method ; fitted operator finite difference methods ; Mathematical analysis ; Mathematical models ; Operators ; Parabolas ; Partial differential equations ; singular perturbations ; stability</subject><ispartof>Journal of difference equations and applications, 2011-05, Vol.17 (5), p.779-794</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>Copyright Taylor &amp; Francis Ltd. May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</citedby><cites>FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bashier, E.B.M.</creatorcontrib><creatorcontrib>Patidar, K.C.</creatorcontrib><title>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</title><title>Journal of difference equations and applications</title><description>We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order , where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.</description><subject>Convergence</subject><subject>Delay</subject><subject>delay parabolic partial differential equation</subject><subject>Difference equations</subject><subject>Finite difference method</subject><subject>fitted operator finite difference methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Parabolas</subject><subject>Partial differential equations</subject><subject>singular perturbations</subject><subject>stability</subject><issn>1023-6198</issn><issn>1563-5120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhhtZwd3RH-Ct8aKX1nx0vsDLsvgFC170HGqSimbJdGaTNDo3f7oZRzy46J5SlXqeCuEdhqeUvKREk1eUMC6pIYZwTsQsyIPhnArJJ0EZOet1n08d0I-Gi1pvCGH9Xp4PPy7Hii4vfsrFYxlDbA39mPdYoOVjv8SGo48hYMHF4bjD9jX7MfQhjDUuX9YEJR3GbrS1bLvsMUHvocA2p-iOVYuQ_iz51eDtCi3m5fHwMECq-OT3uRk-v33z6er9dP3x3Yery-vJzYq0iSsRqAYIYuuNDAEMgVl65JxtBQPJnBaeKCkdOqLQeYOz8Mwpo4kxGPhmeH7auy_5dsXa7C5WhynBgnmtVhtJpVac3k9qw404spvhxX9JKhVlQklGOvrsL_Qmr2XpP7ZaGsoNk3OH6AlyJddaMNh9iTsoB0uJPcZs78TcHXVy4tIj2cG3XJK3DQ4pl1BgcbHetWz73rr5-l6T__vhnyUcwS0</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Bashier, E.B.M.</creator><creator>Patidar, K.C.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201105</creationdate><title>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</title><author>Bashier, E.B.M. ; Patidar, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Convergence</topic><topic>Delay</topic><topic>delay parabolic partial differential equation</topic><topic>Difference equations</topic><topic>Finite difference method</topic><topic>fitted operator finite difference methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Parabolas</topic><topic>Partial differential equations</topic><topic>singular perturbations</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashier, E.B.M.</creatorcontrib><creatorcontrib>Patidar, K.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of difference equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashier, E.B.M.</au><au>Patidar, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation</atitle><jtitle>Journal of difference equations and applications</jtitle><date>2011-05</date><risdate>2011</risdate><volume>17</volume><issue>5</issue><spage>779</spage><epage>794</epage><pages>779-794</pages><issn>1023-6198</issn><eissn>1563-5120</eissn><abstract>We design a parameter robust fitted operator finite difference method for the numerical solution of a singularly perturbed delay parabolic partial differential equation. The method is constructed by replacing the classical differential operator with a fitted operator based on Crank-Nicolson's discretization. The proposed method is analysed for stability and convergence and it is found that this method is unconditionally stable and is convergent with order , where k and h are respectively the time and space step sizes. The performance of this method is illustrated through a numerical example.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10236190903305450</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-6198
ispartof Journal of difference equations and applications, 2011-05, Vol.17 (5), p.779-794
issn 1023-6198
1563-5120
language eng
recordid cdi_proquest_miscellaneous_896168731
source Taylor and Francis Science and Technology Collection
subjects Convergence
Delay
delay parabolic partial differential equation
Difference equations
Finite difference method
fitted operator finite difference methods
Mathematical analysis
Mathematical models
Operators
Parabolas
Partial differential equations
singular perturbations
stability
title A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20fitted%20operator%20finite%20difference%20method%20for%20a%20singularly%20perturbed%20delay%20parabolic%20partial%20differential%20equation&rft.jtitle=Journal%20of%20difference%20equations%20and%20applications&rft.au=Bashier,%20E.B.M.&rft.date=2011-05&rft.volume=17&rft.issue=5&rft.spage=779&rft.epage=794&rft.pages=779-794&rft.issn=1023-6198&rft.eissn=1563-5120&rft_id=info:doi/10.1080/10236190903305450&rft_dat=%3Cproquest_cross%3E1671257620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-375f18aaf5bd96ffa90a46de332b52a62c85d0766cec07ecd9e45d2c798099ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869139264&rft_id=info:pmid/&rfr_iscdi=true