Loading…

Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary

This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2006-11, Vol.21 (4), p.1856-1863
Main Authors: Jayasekara, B., Annakkage, U.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693
cites cdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693
container_end_page 1863
container_issue 4
container_start_page 1856
container_title IEEE transactions on power systems
container_volume 21
creator Jayasekara, B.
Annakkage, U.D.
description This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses
doi_str_mv 10.1109/TPWRS.2006.881111
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896169721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717590</ieee_id><sourcerecordid>896169721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwEL562Jt3dfBxr_YSCpa30GLK7s5iy3dQkK_Tfm7qi4FwGZp53Pl6ELikZUUrk7Wq-XixHY0LYSAga4wgNaJ6LhDAuj9GACJEnQubkFJ15vyERjI0BWt-DM586GNtiW2Pd4klZdk4HwHPb7Fu7NbrBC9g58NCGXzC8A1453XoTq3gZdGEaE_b4znZtpd3-HJ3UuvFw8ZOH6O3xYTV9TmavTy_TySwpU0lCUmhgTFMgUFacEy5ZwWpWVbLOKslZLljGRVXqqoQiIySTlFdCcpnTgpKCyXSIbvq5O2c_OvBBbY0voWl0C7bzSkhGmeRjGsnrf-TGdq6NxykRF6V8nB7G0R4qnfXeQa12zmzjP4oSdTBafRutDkar3uioueo1BgD-eE55Lkn6BcIseoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865837239</pqid></control><display><type>article</type><title>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jayasekara, B. ; Annakkage, U.D.</creator><creatorcontrib>Jayasekara, B. ; Annakkage, U.D.</creatorcontrib><description>This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2006.881111</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Application software ; Approximation ; Boundaries ; Computational efficiency ; Kernel ridge regression ; Linear approximation ; Load flow ; Mathematical analysis ; Mathematical models ; Nonlinearity ; optimal power flow ; Polynomials ; Power generation ; Power system dynamics ; Power system faults ; Power system security ; Power system stability ; Power system transients ; Transient stability ; transient stability boundary (TSB) ; Voltage</subject><ispartof>IEEE transactions on power systems, 2006-11, Vol.21 (4), p.1856-1863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</citedby><cites>FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717590$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Jayasekara, B.</creatorcontrib><creatorcontrib>Annakkage, U.D.</creatorcontrib><title>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses</description><subject>Application software</subject><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational efficiency</subject><subject>Kernel ridge regression</subject><subject>Linear approximation</subject><subject>Load flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>optimal power flow</subject><subject>Polynomials</subject><subject>Power generation</subject><subject>Power system dynamics</subject><subject>Power system faults</subject><subject>Power system security</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Transient stability</subject><subject>transient stability boundary (TSB)</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKs_QLwEL562Jt3dfBxr_YSCpa30GLK7s5iy3dQkK_Tfm7qi4FwGZp53Pl6ELikZUUrk7Wq-XixHY0LYSAga4wgNaJ6LhDAuj9GACJEnQubkFJ15vyERjI0BWt-DM586GNtiW2Pd4klZdk4HwHPb7Fu7NbrBC9g58NCGXzC8A1453XoTq3gZdGEaE_b4znZtpd3-HJ3UuvFw8ZOH6O3xYTV9TmavTy_TySwpU0lCUmhgTFMgUFacEy5ZwWpWVbLOKslZLljGRVXqqoQiIySTlFdCcpnTgpKCyXSIbvq5O2c_OvBBbY0voWl0C7bzSkhGmeRjGsnrf-TGdq6NxykRF6V8nB7G0R4qnfXeQa12zmzjP4oSdTBafRutDkar3uioueo1BgD-eE55Lkn6BcIseoc</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Jayasekara, B.</creator><creator>Annakkage, U.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20061101</creationdate><title>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</title><author>Jayasekara, B. ; Annakkage, U.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational efficiency</topic><topic>Kernel ridge regression</topic><topic>Linear approximation</topic><topic>Load flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>optimal power flow</topic><topic>Polynomials</topic><topic>Power generation</topic><topic>Power system dynamics</topic><topic>Power system faults</topic><topic>Power system security</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Transient stability</topic><topic>transient stability boundary (TSB)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayasekara, B.</creatorcontrib><creatorcontrib>Annakkage, U.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayasekara, B.</au><au>Annakkage, U.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2006-11-01</date><risdate>2006</risdate><volume>21</volume><issue>4</issue><spage>1856</spage><epage>1863</epage><pages>1856-1863</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2006.881111</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2006-11, Vol.21 (4), p.1856-1863
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_896169721
source IEEE Electronic Library (IEL) Journals
subjects Application software
Approximation
Boundaries
Computational efficiency
Kernel ridge regression
Linear approximation
Load flow
Mathematical analysis
Mathematical models
Nonlinearity
optimal power flow
Polynomials
Power generation
Power system dynamics
Power system faults
Power system security
Power system stability
Power system transients
Transient stability
transient stability boundary (TSB)
Voltage
title Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20an%20Accurate%20Polynomial%20Representation%20of%20the%20Transient%20Stability%20Boundary&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Jayasekara,%20B.&rft.date=2006-11-01&rft.volume=21&rft.issue=4&rft.spage=1856&rft.epage=1863&rft.pages=1856-1863&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2006.881111&rft_dat=%3Cproquest_cross%3E896169721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865837239&rft_id=info:pmid/&rft_ieee_id=1717590&rfr_iscdi=true