Loading…
Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary
This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed...
Saved in:
Published in: | IEEE transactions on power systems 2006-11, Vol.21 (4), p.1856-1863 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693 |
container_end_page | 1863 |
container_issue | 4 |
container_start_page | 1856 |
container_title | IEEE transactions on power systems |
container_volume | 21 |
creator | Jayasekara, B. Annakkage, U.D. |
description | This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses |
doi_str_mv | 10.1109/TPWRS.2006.881111 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896169721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717590</ieee_id><sourcerecordid>896169721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwEL562Jt3dfBxr_YSCpa30GLK7s5iy3dQkK_Tfm7qi4FwGZp53Pl6ELikZUUrk7Wq-XixHY0LYSAga4wgNaJ6LhDAuj9GACJEnQubkFJ15vyERjI0BWt-DM586GNtiW2Pd4klZdk4HwHPb7Fu7NbrBC9g58NCGXzC8A1453XoTq3gZdGEaE_b4znZtpd3-HJ3UuvFw8ZOH6O3xYTV9TmavTy_TySwpU0lCUmhgTFMgUFacEy5ZwWpWVbLOKslZLljGRVXqqoQiIySTlFdCcpnTgpKCyXSIbvq5O2c_OvBBbY0voWl0C7bzSkhGmeRjGsnrf-TGdq6NxykRF6V8nB7G0R4qnfXeQa12zmzjP4oSdTBafRutDkar3uioueo1BgD-eE55Lkn6BcIseoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865837239</pqid></control><display><type>article</type><title>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jayasekara, B. ; Annakkage, U.D.</creator><creatorcontrib>Jayasekara, B. ; Annakkage, U.D.</creatorcontrib><description>This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2006.881111</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Application software ; Approximation ; Boundaries ; Computational efficiency ; Kernel ridge regression ; Linear approximation ; Load flow ; Mathematical analysis ; Mathematical models ; Nonlinearity ; optimal power flow ; Polynomials ; Power generation ; Power system dynamics ; Power system faults ; Power system security ; Power system stability ; Power system transients ; Transient stability ; transient stability boundary (TSB) ; Voltage</subject><ispartof>IEEE transactions on power systems, 2006-11, Vol.21 (4), p.1856-1863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</citedby><cites>FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717590$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Jayasekara, B.</creatorcontrib><creatorcontrib>Annakkage, U.D.</creatorcontrib><title>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses</description><subject>Application software</subject><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational efficiency</subject><subject>Kernel ridge regression</subject><subject>Linear approximation</subject><subject>Load flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>optimal power flow</subject><subject>Polynomials</subject><subject>Power generation</subject><subject>Power system dynamics</subject><subject>Power system faults</subject><subject>Power system security</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Transient stability</subject><subject>transient stability boundary (TSB)</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKs_QLwEL562Jt3dfBxr_YSCpa30GLK7s5iy3dQkK_Tfm7qi4FwGZp53Pl6ELikZUUrk7Wq-XixHY0LYSAga4wgNaJ6LhDAuj9GACJEnQubkFJ15vyERjI0BWt-DM586GNtiW2Pd4klZdk4HwHPb7Fu7NbrBC9g58NCGXzC8A1453XoTq3gZdGEaE_b4znZtpd3-HJ3UuvFw8ZOH6O3xYTV9TmavTy_TySwpU0lCUmhgTFMgUFacEy5ZwWpWVbLOKslZLljGRVXqqoQiIySTlFdCcpnTgpKCyXSIbvq5O2c_OvBBbY0voWl0C7bzSkhGmeRjGsnrf-TGdq6NxykRF6V8nB7G0R4qnfXeQa12zmzjP4oSdTBafRutDkar3uioueo1BgD-eE55Lkn6BcIseoc</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Jayasekara, B.</creator><creator>Annakkage, U.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20061101</creationdate><title>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</title><author>Jayasekara, B. ; Annakkage, U.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational efficiency</topic><topic>Kernel ridge regression</topic><topic>Linear approximation</topic><topic>Load flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>optimal power flow</topic><topic>Polynomials</topic><topic>Power generation</topic><topic>Power system dynamics</topic><topic>Power system faults</topic><topic>Power system security</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Transient stability</topic><topic>transient stability boundary (TSB)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayasekara, B.</creatorcontrib><creatorcontrib>Annakkage, U.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayasekara, B.</au><au>Annakkage, U.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2006-11-01</date><risdate>2006</risdate><volume>21</volume><issue>4</issue><spage>1856</spage><epage>1863</epage><pages>1856-1863</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents an efficient method to estimate a transient stability boundary (TSB) as a nonlinear function of power system variables. The proposed method exploits the computational efficiency of linear estimation methods to determine an accurate nonlinear function. The novelty of the proposed method is that a nonlinear transformation is applied to the original variables, voltage magnitudes, and phase angles, so that the TSB is approximately linear in terms of the transformed variables. The linear function obtained using the transformed variables is indeed nonlinear in terms of original variables. The attractiveness of this method is that the estimated function is not a linearized approximation, although a linear estimation method is used. The potential of the proposed method is demonstrated using the New England 39-bus system and a larger power system with 470 buses</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2006.881111</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2006-11, Vol.21 (4), p.1856-1863 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_miscellaneous_896169721 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Application software Approximation Boundaries Computational efficiency Kernel ridge regression Linear approximation Load flow Mathematical analysis Mathematical models Nonlinearity optimal power flow Polynomials Power generation Power system dynamics Power system faults Power system security Power system stability Power system transients Transient stability transient stability boundary (TSB) Voltage |
title | Derivation of an Accurate Polynomial Representation of the Transient Stability Boundary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20an%20Accurate%20Polynomial%20Representation%20of%20the%20Transient%20Stability%20Boundary&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Jayasekara,%20B.&rft.date=2006-11-01&rft.volume=21&rft.issue=4&rft.spage=1856&rft.epage=1863&rft.pages=1856-1863&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2006.881111&rft_dat=%3Cproquest_cross%3E896169721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-bae66a1e0ecd770796b6f6dd9f4d976586478dcadceb4004917d897951b10b693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865837239&rft_id=info:pmid/&rft_ieee_id=1717590&rfr_iscdi=true |