Loading…
An HVS-Directed Neural-Network-Based Image Resolution Enhancement Scheme for Image Resizing
In this paper, a novel human visual system (HVS)-directed neural-network-based adaptive interpolation scheme for natural image is proposed. A fuzzy decision system built from the characteristics of the HVS is proposed to classify pixels of the input image into human perception nonsensitive class and...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2007-08, Vol.15 (4), p.605-615 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a novel human visual system (HVS)-directed neural-network-based adaptive interpolation scheme for natural image is proposed. A fuzzy decision system built from the characteristics of the HVS is proposed to classify pixels of the input image into human perception nonsensitive class and sensitive class. Bilinear interpolation is used to interpolate the nonsensitive regions and a neural network is proposed to interpolate the sensitive regions along edge directions. High-resolution digital images along with supervised learning algorithms are used to automatically train the proposed neural network. Simulation results demonstrate that the proposed new resolution enhancement algorithm can produce a higher visual quality for the interpolated image than the conventional interpolation methods. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2006.889875 |