Loading…

Accelerated ageing and degradation in poly-l-lactide/hydroxyapatite nanocomposites

Dry, compression molded films of medical grade poly-l-lactide (PLLA) showed a marked reduction in tensile strength and strain after accelerated ageing in aqueous NaOH at 50°C, accompanied by mass loss, surface erosion, increased hydrophilicity and, in the case of the initially amorphous films, cold...

Full description

Saved in:
Bibliographic Details
Published in:Polymer degradation and stability 2011-04, Vol.96 (4), p.595-607
Main Authors: Delabarde, Claire, Plummer, Christopher J.G., Bourban, Pierre-Etienne, Månson, Jan-Anders E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dry, compression molded films of medical grade poly-l-lactide (PLLA) showed a marked reduction in tensile strength and strain after accelerated ageing in aqueous NaOH at 50°C, accompanied by mass loss, surface erosion, increased hydrophilicity and, in the case of the initially amorphous films, cold crystallization owing to the plasticizing effect of the ageing medium. Addition of well dispersed nanosized hydroxyapatite (nHA) particles resulted in increases in the rate of mass loss during ageing, identified with accelerated degradation at the matrix/particle interfaces. However, the associated decreases in tensile strength and strain to fail with ageing time were far less marked in the presence of the nHA than in the unmodified films. This implied that nHA acts as an effective toughener of the bulk material, consistent with TEM observations of the deformed films, which indicated failure of the particle–matrix interfaces to promote plastic deformation of the PLLA.
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2010.12.018