Loading…
Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells
A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers...
Saved in:
Published in: | IEEE electron device letters 2006-03, Vol.27 (3), p.163-165 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2005.863566 |