Loading…

A 2-D analytical solution for SCEs in DG MOSFETs

A two-dimensional (2-D) analytical solution of electrostatic potential is derived for undoped (or lightly doped) double-gate (DG) MOSFETs in the subthreshold region by solving Poissons equation in a 2-D boundary value problem. It is shown that the subthreshold current, short-channel threshold voltag...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2004-09, Vol.51 (9), p.1385-1391
Main Authors: Liang, X., Taur, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A two-dimensional (2-D) analytical solution of electrostatic potential is derived for undoped (or lightly doped) double-gate (DG) MOSFETs in the subthreshold region by solving Poissons equation in a 2-D boundary value problem. It is shown that the subthreshold current, short-channel threshold voltage rolloff and subthreshold slope predicted by the analytical solution are in close agreement with 2-D numerical simulation results for both symmetric and asymmetric DG MOSFETs without the need of any fitting parameters. The analytical model not only provides useful physics insight into short-channel effects, but also serves as basis for compact modeling of DG MOSFETs.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2004.832707