Loading…

Electron transport through metal-multiwall carbon nanotube interfaces

In this paper, we examine mechanisms of electron transport across the metal-carbon nanotube (CNT) interface for two different types of multiwall carbon nanotube (MWNT) architectures, horizontal or side-contacted MWNTs and vertical or end-contacted MWNTs. Horizontally aligned nanotube growth and elec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2004-06, Vol.3 (2), p.311-317
Main Authors: Quoc Ngo, Petranovic, D., Krishnan, S., Cassell, A.M., Qi Ye, Jun Li, Meyyappan, M., Yang, C.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we examine mechanisms of electron transport across the metal-carbon nanotube (CNT) interface for two different types of multiwall carbon nanotube (MWNT) architectures, horizontal or side-contacted MWNTs and vertical or end-contacted MWNTs. Horizontally aligned nanotube growth and electrical characteristics are examined with respect to their potential applications in silicon-based technologies. Recent advances in the synthesis techniques of vertical MWNTs have also enhanced the possibility for a manufacturable solution incorporating this novel material as on-chip interconnects or vias as copper interconnect feature sizes are scaled into the sub-100-nm regime. A vertical MWNT architecture is presented that may be suitable for integration into silicon-based technologies. The growth method for this architecture and its effect on electrical characteristics are examined. Through simulations, dc measurements, and comparison of our results with previous studies, we explain why high contact resistance is observed in metal-CNT-metal systems.
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2004.828553