Loading…

Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell

This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2010-09, Vol.195 (17), p.5628-5636
Main Authors: Tang, Yong, Yuan, Wei, Pan, Minqiang, Tang, Biao, Li, Zongtao, Wan, Zhenping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3
cites cdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3
container_end_page 5636
container_issue 17
container_start_page 5628
container_title Journal of power sources
container_volume 195
creator Tang, Yong
Yuan, Wei
Pan, Minqiang
Tang, Biao
Li, Zongtao
Wan, Zhenping
description This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7 mW cm −2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.
doi_str_mv 10.1016/j.jpowsour.2010.03.069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896197906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310004805</els_id><sourcerecordid>1671275277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1EJZaWv4B8QXDJ4o_EE99AVaFIlbjQs2U7Y9arbBzspKj_Hq9SeoSTpdHzzljPS8hbzvaccfXxuD_O6XdJa94LVodM7pnSL8iO9yAbAV33kuyYhL4B6OQr8rqUI2OMc2A7gjchoF8KTYGWJa9-WbMdqS3zNp3ockA6Yw4pn-zk8QxaOttS4gNSG3PjMtrlEKefdIi5pugJl4Od0kjDiiP1OI5X5CLYseCbp_eS3H-5-XF929x9__rt-vNd41sGSyNl11kJrQM_cK5Ryw5AtS54Z5V1bgDnhII-9L2T3rYeULe6bVFo4Qdt5SV5v-2dc_q1YlnMKZbzB-yEaS2m14pr0ExV8sM_Sa6AV3UCoKJqQ31OpWQMZs7xZPOj4cycGzBH87cBc27AMGlqAzX47umGLd6OIVd_sTynheh5r0FU7tPGYVXzEDGb4iNW15tPM6T4v1N_AKiSoYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671275277</pqid></control><display><type>article</type><title>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</title><source>ScienceDirect Journals</source><creator>Tang, Yong ; Yuan, Wei ; Pan, Minqiang ; Tang, Biao ; Li, Zongtao ; Wan, Zhenping</creator><creatorcontrib>Tang, Yong ; Yuan, Wei ; Pan, Minqiang ; Tang, Biao ; Li, Zongtao ; Wan, Zhenping</creatorcontrib><description>This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7 mW cm −2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.03.069</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accumulators ; Air-breathing ; Applied sciences ; Assembly ; Cell performance ; Collectors ; Crossovers ; Diffusion layers ; Direct energy conversion and energy accumulation ; Direct methanol fuel cell ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Membranes ; Methanol crossover ; Methyl alcohol ; Passive ; Structural aspects</subject><ispartof>Journal of power sources, 2010-09, Vol.195 (17), p.5628-5636</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</citedby><cites>FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22818972$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Pan, Minqiang</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Li, Zongtao</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><title>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</title><title>Journal of power sources</title><description>This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7 mW cm −2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.</description><subject>Accumulators</subject><subject>Air-breathing</subject><subject>Applied sciences</subject><subject>Assembly</subject><subject>Cell performance</subject><subject>Collectors</subject><subject>Crossovers</subject><subject>Diffusion layers</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Direct methanol fuel cell</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Membranes</subject><subject>Methanol crossover</subject><subject>Methyl alcohol</subject><subject>Passive</subject><subject>Structural aspects</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1EJZaWv4B8QXDJ4o_EE99AVaFIlbjQs2U7Y9arbBzspKj_Hq9SeoSTpdHzzljPS8hbzvaccfXxuD_O6XdJa94LVodM7pnSL8iO9yAbAV33kuyYhL4B6OQr8rqUI2OMc2A7gjchoF8KTYGWJa9-WbMdqS3zNp3ockA6Yw4pn-zk8QxaOttS4gNSG3PjMtrlEKefdIi5pugJl4Od0kjDiiP1OI5X5CLYseCbp_eS3H-5-XF929x9__rt-vNd41sGSyNl11kJrQM_cK5Ryw5AtS54Z5V1bgDnhII-9L2T3rYeULe6bVFo4Qdt5SV5v-2dc_q1YlnMKZbzB-yEaS2m14pr0ExV8sM_Sa6AV3UCoKJqQ31OpWQMZs7xZPOj4cycGzBH87cBc27AMGlqAzX47umGLd6OIVd_sTynheh5r0FU7tPGYVXzEDGb4iNW15tPM6T4v1N_AKiSoYA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Tang, Yong</creator><creator>Yuan, Wei</creator><creator>Pan, Minqiang</creator><creator>Tang, Biao</creator><creator>Li, Zongtao</creator><creator>Wan, Zhenping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20100901</creationdate><title>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</title><author>Tang, Yong ; Yuan, Wei ; Pan, Minqiang ; Tang, Biao ; Li, Zongtao ; Wan, Zhenping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accumulators</topic><topic>Air-breathing</topic><topic>Applied sciences</topic><topic>Assembly</topic><topic>Cell performance</topic><topic>Collectors</topic><topic>Crossovers</topic><topic>Diffusion layers</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Direct methanol fuel cell</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Membranes</topic><topic>Methanol crossover</topic><topic>Methyl alcohol</topic><topic>Passive</topic><topic>Structural aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Pan, Minqiang</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Li, Zongtao</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yong</au><au>Yuan, Wei</au><au>Pan, Minqiang</au><au>Tang, Biao</au><au>Li, Zongtao</au><au>Wan, Zhenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>195</volume><issue>17</issue><spage>5628</spage><epage>5636</epage><pages>5628-5636</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7 mW cm −2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.03.069</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-09, Vol.195 (17), p.5628-5636
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_896197906
source ScienceDirect Journals
subjects Accumulators
Air-breathing
Applied sciences
Assembly
Cell performance
Collectors
Crossovers
Diffusion layers
Direct energy conversion and energy accumulation
Direct methanol fuel cell
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Membranes
Methanol crossover
Methyl alcohol
Passive
Structural aspects
title Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20structural%20aspects%20on%20the%20performance%20of%20a%20passive%20air-breathing%20direct%20methanol%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Tang,%20Yong&rft.date=2010-09-01&rft.volume=195&rft.issue=17&rft.spage=5628&rft.epage=5636&rft.pages=5628-5636&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.03.069&rft_dat=%3Cproquest_cross%3E1671275277%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671275277&rft_id=info:pmid/&rfr_iscdi=true