Loading…
Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell
This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusi...
Saved in:
Published in: | Journal of power sources 2010-09, Vol.195 (17), p.5628-5636 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3 |
container_end_page | 5636 |
container_issue | 17 |
container_start_page | 5628 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Tang, Yong Yuan, Wei Pan, Minqiang Tang, Biao Li, Zongtao Wan, Zhenping |
description | This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7
mW
cm
−2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored. |
doi_str_mv | 10.1016/j.jpowsour.2010.03.069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896197906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310004805</els_id><sourcerecordid>1671275277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1EJZaWv4B8QXDJ4o_EE99AVaFIlbjQs2U7Y9arbBzspKj_Hq9SeoSTpdHzzljPS8hbzvaccfXxuD_O6XdJa94LVodM7pnSL8iO9yAbAV33kuyYhL4B6OQr8rqUI2OMc2A7gjchoF8KTYGWJa9-WbMdqS3zNp3ockA6Yw4pn-zk8QxaOttS4gNSG3PjMtrlEKefdIi5pugJl4Od0kjDiiP1OI5X5CLYseCbp_eS3H-5-XF929x9__rt-vNd41sGSyNl11kJrQM_cK5Ryw5AtS54Z5V1bgDnhII-9L2T3rYeULe6bVFo4Qdt5SV5v-2dc_q1YlnMKZbzB-yEaS2m14pr0ExV8sM_Sa6AV3UCoKJqQ31OpWQMZs7xZPOj4cycGzBH87cBc27AMGlqAzX47umGLd6OIVd_sTynheh5r0FU7tPGYVXzEDGb4iNW15tPM6T4v1N_AKiSoYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671275277</pqid></control><display><type>article</type><title>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</title><source>ScienceDirect Journals</source><creator>Tang, Yong ; Yuan, Wei ; Pan, Minqiang ; Tang, Biao ; Li, Zongtao ; Wan, Zhenping</creator><creatorcontrib>Tang, Yong ; Yuan, Wei ; Pan, Minqiang ; Tang, Biao ; Li, Zongtao ; Wan, Zhenping</creatorcontrib><description>This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7
mW
cm
−2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.03.069</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accumulators ; Air-breathing ; Applied sciences ; Assembly ; Cell performance ; Collectors ; Crossovers ; Diffusion layers ; Direct energy conversion and energy accumulation ; Direct methanol fuel cell ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Membranes ; Methanol crossover ; Methyl alcohol ; Passive ; Structural aspects</subject><ispartof>Journal of power sources, 2010-09, Vol.195 (17), p.5628-5636</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</citedby><cites>FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22818972$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Pan, Minqiang</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Li, Zongtao</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><title>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</title><title>Journal of power sources</title><description>This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7
mW
cm
−2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.</description><subject>Accumulators</subject><subject>Air-breathing</subject><subject>Applied sciences</subject><subject>Assembly</subject><subject>Cell performance</subject><subject>Collectors</subject><subject>Crossovers</subject><subject>Diffusion layers</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Direct methanol fuel cell</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Membranes</subject><subject>Methanol crossover</subject><subject>Methyl alcohol</subject><subject>Passive</subject><subject>Structural aspects</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1EJZaWv4B8QXDJ4o_EE99AVaFIlbjQs2U7Y9arbBzspKj_Hq9SeoSTpdHzzljPS8hbzvaccfXxuD_O6XdJa94LVodM7pnSL8iO9yAbAV33kuyYhL4B6OQr8rqUI2OMc2A7gjchoF8KTYGWJa9-WbMdqS3zNp3ockA6Yw4pn-zk8QxaOttS4gNSG3PjMtrlEKefdIi5pugJl4Od0kjDiiP1OI5X5CLYseCbp_eS3H-5-XF929x9__rt-vNd41sGSyNl11kJrQM_cK5Ryw5AtS54Z5V1bgDnhII-9L2T3rYeULe6bVFo4Qdt5SV5v-2dc_q1YlnMKZbzB-yEaS2m14pr0ExV8sM_Sa6AV3UCoKJqQ31OpWQMZs7xZPOj4cycGzBH87cBc27AMGlqAzX47umGLd6OIVd_sTynheh5r0FU7tPGYVXzEDGb4iNW15tPM6T4v1N_AKiSoYA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Tang, Yong</creator><creator>Yuan, Wei</creator><creator>Pan, Minqiang</creator><creator>Tang, Biao</creator><creator>Li, Zongtao</creator><creator>Wan, Zhenping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20100901</creationdate><title>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</title><author>Tang, Yong ; Yuan, Wei ; Pan, Minqiang ; Tang, Biao ; Li, Zongtao ; Wan, Zhenping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accumulators</topic><topic>Air-breathing</topic><topic>Applied sciences</topic><topic>Assembly</topic><topic>Cell performance</topic><topic>Collectors</topic><topic>Crossovers</topic><topic>Diffusion layers</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Direct methanol fuel cell</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Membranes</topic><topic>Methanol crossover</topic><topic>Methyl alcohol</topic><topic>Passive</topic><topic>Structural aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Pan, Minqiang</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Li, Zongtao</creatorcontrib><creatorcontrib>Wan, Zhenping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yong</au><au>Yuan, Wei</au><au>Pan, Minqiang</au><au>Tang, Biao</au><au>Li, Zongtao</au><au>Wan, Zhenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>195</volume><issue>17</issue><spage>5628</spage><epage>5636</epage><pages>5628-5636</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This study systematically investigates the effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell (DMFC). Three factors are selected in this study: (1) two different open ratios of the current collector; (2) two different assembly methods of the diffusion layer; and (3) three membrane types with different thicknesses. The interrelations and interactions among these factors have been taken into account. The results demonstrate that these structural factors combine to significantly affect the cell performance of DMFCs. The higher open ratio not only provides a larger area for mass transfer passage and facilitates removal of the products, but also promotes higher methanol crossover. The hot-pressed diffusion layer (DL) can mitigate methanol permeation while the non-bonded variant is able to enhance product removal. The increase of membrane thickness helps obtain a lower methanol crossover rate and higher methanol utilisation efficiency, but also depresses cell performance under certain conditions. In this research, the maximum power density of 10.7
mW
cm
−2 is obtained by selecting the current collector with a lower open ratio, the non-bonded DL, and the Nafion 117 membrane. The effect of methanol concentration on the performance of DMFCs is also explored.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.03.069</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-09, Vol.195 (17), p.5628-5636 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_896197906 |
source | ScienceDirect Journals |
subjects | Accumulators Air-breathing Applied sciences Assembly Cell performance Collectors Crossovers Diffusion layers Direct energy conversion and energy accumulation Direct methanol fuel cell Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Membranes Methanol crossover Methyl alcohol Passive Structural aspects |
title | Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20structural%20aspects%20on%20the%20performance%20of%20a%20passive%20air-breathing%20direct%20methanol%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Tang,%20Yong&rft.date=2010-09-01&rft.volume=195&rft.issue=17&rft.spage=5628&rft.epage=5636&rft.pages=5628-5636&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.03.069&rft_dat=%3Cproquest_cross%3E1671275277%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-3355a374b7cd119e9357764bfcba6abbd7bb2678f88b3ca4c7e94944e292cd9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671275277&rft_id=info:pmid/&rfr_iscdi=true |