Loading…

Replicating financial market dynamics with a simple self-organized critical lattice model

We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of t...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2011-09, Vol.390 (18-19), p.3120-3135
Main Authors: Dupoyet, B., Fiebig, H.R., Musgrove, D.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3
cites cdi_FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3
container_end_page 3135
container_issue 18-19
container_start_page 3120
container_title Physica A
container_volume 390
creator Dupoyet, B.
Fiebig, H.R.
Musgrove, D.P.
description We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data. ► Self-organized critical lattice model simulates prominent financial market features. ► Model yields fat tails of the gains distribution from its intrinsic dynamics. ► Gains time series exhibits volatility clustering. ► GARCH fits find model time series almost indistinguishable from real market data.
doi_str_mv 10.1016/j.physa.2011.04.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896211311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437111003116</els_id><sourcerecordid>896211311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-Ai-5eZoxmczz4EEWX7AgiB48hUynZzdr5mESlfXXm3U9Cw1dh6qi-yPknLOUM15ebtJpvfUqzRjnKctTxqsDMuN1JZKM8-aQzJio6iQXFT8mJ95vGIsWkc3I6xNO1oAKZljRzgxqAKMs7ZV7w0D1dlC9AU-_TFhTRb3pJ4vUo-2S0a3UYL5RU3AmxApLrQpRIO1HjfaUHHXKejz723PycnvzvLhPlo93D4vrZQKiZiFpoWAdqKriJRQKygJE22nVIMbDK1CtqLOy0jrqDBrW5Vhn2GrMOBYs5yjm5GLfO7nx_QN9kL3xgNaqAccPL-umjAxEnDkReye40XuHnZyciZ9uJWdyx1Fu5C9HueMoWS53kObkap_C-MSnQSc9GBwAtXEIQerR_Jv_ASR2fzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896211311</pqid></control><display><type>article</type><title>Replicating financial market dynamics with a simple self-organized critical lattice model</title><source>Elsevier</source><creator>Dupoyet, B. ; Fiebig, H.R. ; Musgrove, D.P.</creator><creatorcontrib>Dupoyet, B. ; Fiebig, H.R. ; Musgrove, D.P.</creatorcontrib><description>We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data. ► Self-organized critical lattice model simulates prominent financial market features. ► Model yields fat tails of the gains distribution from its intrinsic dynamics. ► Gains time series exhibits volatility clustering. ► GARCH fits find model time series almost indistinguishable from real market data.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2011.04.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Econophysics ; Financial markets ; Gain ; Lattices ; Markets ; Mathematical models ; Self-organized criticality ; Statistical field theory ; Time series ; Tuning ; Volatility</subject><ispartof>Physica A, 2011-09, Vol.390 (18-19), p.3120-3135</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3</citedby><cites>FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dupoyet, B.</creatorcontrib><creatorcontrib>Fiebig, H.R.</creatorcontrib><creatorcontrib>Musgrove, D.P.</creatorcontrib><title>Replicating financial market dynamics with a simple self-organized critical lattice model</title><title>Physica A</title><description>We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data. ► Self-organized critical lattice model simulates prominent financial market features. ► Model yields fat tails of the gains distribution from its intrinsic dynamics. ► Gains time series exhibits volatility clustering. ► GARCH fits find model time series almost indistinguishable from real market data.</description><subject>Econophysics</subject><subject>Financial markets</subject><subject>Gain</subject><subject>Lattices</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Self-organized criticality</subject><subject>Statistical field theory</subject><subject>Time series</subject><subject>Tuning</subject><subject>Volatility</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-Ai-5eZoxmczz4EEWX7AgiB48hUynZzdr5mESlfXXm3U9Cw1dh6qi-yPknLOUM15ebtJpvfUqzRjnKctTxqsDMuN1JZKM8-aQzJio6iQXFT8mJ95vGIsWkc3I6xNO1oAKZljRzgxqAKMs7ZV7w0D1dlC9AU-_TFhTRb3pJ4vUo-2S0a3UYL5RU3AmxApLrQpRIO1HjfaUHHXKejz723PycnvzvLhPlo93D4vrZQKiZiFpoWAdqKriJRQKygJE22nVIMbDK1CtqLOy0jrqDBrW5Vhn2GrMOBYs5yjm5GLfO7nx_QN9kL3xgNaqAccPL-umjAxEnDkReye40XuHnZyciZ9uJWdyx1Fu5C9HueMoWS53kObkap_C-MSnQSc9GBwAtXEIQerR_Jv_ASR2fzM</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Dupoyet, B.</creator><creator>Fiebig, H.R.</creator><creator>Musgrove, D.P.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110915</creationdate><title>Replicating financial market dynamics with a simple self-organized critical lattice model</title><author>Dupoyet, B. ; Fiebig, H.R. ; Musgrove, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Econophysics</topic><topic>Financial markets</topic><topic>Gain</topic><topic>Lattices</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Self-organized criticality</topic><topic>Statistical field theory</topic><topic>Time series</topic><topic>Tuning</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupoyet, B.</creatorcontrib><creatorcontrib>Fiebig, H.R.</creatorcontrib><creatorcontrib>Musgrove, D.P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dupoyet, B.</au><au>Fiebig, H.R.</au><au>Musgrove, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Replicating financial market dynamics with a simple self-organized critical lattice model</atitle><jtitle>Physica A</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>390</volume><issue>18-19</issue><spage>3120</spage><epage>3135</epage><pages>3120-3135</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data. ► Self-organized critical lattice model simulates prominent financial market features. ► Model yields fat tails of the gains distribution from its intrinsic dynamics. ► Gains time series exhibits volatility clustering. ► GARCH fits find model time series almost indistinguishable from real market data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2011.04.017</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2011-09, Vol.390 (18-19), p.3120-3135
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_896211311
source Elsevier
subjects Econophysics
Financial markets
Gain
Lattices
Markets
Mathematical models
Self-organized criticality
Statistical field theory
Time series
Tuning
Volatility
title Replicating financial market dynamics with a simple self-organized critical lattice model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Replicating%20financial%20market%20dynamics%20with%20a%20simple%20self-organized%20critical%20lattice%20model&rft.jtitle=Physica%20A&rft.au=Dupoyet,%20B.&rft.date=2011-09-15&rft.volume=390&rft.issue=18-19&rft.spage=3120&rft.epage=3135&rft.pages=3120-3135&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2011.04.017&rft_dat=%3Cproquest_cross%3E896211311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-bc50fca7716c5ac65c3bfda9ee1197cab38267dd97c2c90f4e82ebde21e5041e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896211311&rft_id=info:pmid/&rfr_iscdi=true