Loading…

Hall effect magnetic sensors based on polysilicon TFTs

This paper deals with magnetic position sensors compatible with large-area electronics using polycrystalline silicon deposited by a low-pressure chemical reaction technique. The principle of this large-area position sensor is a matrix of thin-film field effect transistors (TFTs) with two additional...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2004-10, Vol.4 (5), p.597-602
Main Authors: Carvou, E., Le Bihan, F., Rogel, R., Bonnaud, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with magnetic position sensors compatible with large-area electronics using polycrystalline silicon deposited by a low-pressure chemical reaction technique. The principle of this large-area position sensor is a matrix of thin-film field effect transistors (TFTs) with two additional Hall probes. The performances of the TFT-based cells are linked to the crystalline quality of the active polysilicon layer, which depends on the deposition conditions and on technological processes. Layers are made from two precursor gases, silane or disilane, and two processes. We have compared the sensitivity (absolute or relative) of devices and measured their power consumption. Sensors made from disilane have a sensitivity of 18 mV/T, and the ones made with a monolayer process a sensitivity of 28 mV/T. We propose a simple model, which describes the bias dependency of the sensitivity. The effect of geometry and layer morphology on the offset voltage is also studied.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2004.833497