Loading…

Multiweight optimization in optimal bounding ellipsoid algorithms

Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to traditional least-squares methods for identification and filtering problems involving affine-in-parameters signal and system models. The benefits-including low computational efficiency, superior tracking ability, and sele...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2006-02, Vol.54 (2), p.679-690
Main Authors: Joachim, D., Deller, J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3
cites cdi_FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3
container_end_page 690
container_issue 2
container_start_page 679
container_title IEEE transactions on signal processing
container_volume 54
creator Joachim, D.
Deller, J.R.
description Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to traditional least-squares methods for identification and filtering problems involving affine-in-parameters signal and system models. The benefits-including low computational efficiency, superior tracking ability, and selective updating that permits processor multi-tasking-are enhanced by multiweight (MW) optimization in which the data history is considered in determining update times and optimal weights on the observations. MW optimization for OBE algorithms is introduced, and an example MW-OBE algorithm implementation is developed around the recent quasi-OBE algorithm. Optimality of the solution is discussed, and simulation studies are used to illustrate performance benefits.
doi_str_mv 10.1109/TSP.2005.861893
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_896213031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1576993</ieee_id><sourcerecordid>896213031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosoqKtnD16KoJ66O9MkTXIU8QsUBVfwFtI0XSPdZm1aRH-9WSsIHjxlQp55J_MkyQHCFBHkbP74MM0B2FQUKCTZSHZQUsyA8mIz1sBIxgR_3k52Q3gFQEplsZOc3Q1N796tW7z0qV_1buk-de98m7p2vOsmLf3QVq5dpLZp3Cp4V6W6WfjO9S_LsJds1boJdv_nnCRPlxfz8-vs9v7q5vzsNjNEYJ-hoYCCl7q21nIKXOe6JHlOZcWtMZJTU2FlqCRYChAVY6iLopKRqAoa0UlyOuauOv822NCrpQsm_ki31g9BCVnkSIBgJE_-JXMBlAATETz6A776oWvjFkrmgIwQChGajZDpfAidrdWqi1a6D4Wg1uZVNK_W5tVoPnYc_8TqYHRTd7o1Lvy2cZoz8j3-cORcVPL7zHghY8oXqWGL7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920153340</pqid></control><display><type>article</type><title>Multiweight optimization in optimal bounding ellipsoid algorithms</title><source>IEEE Xplore (Online service)</source><creator>Joachim, D. ; Deller, J.R.</creator><creatorcontrib>Joachim, D. ; Deller, J.R.</creatorcontrib><description>Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to traditional least-squares methods for identification and filtering problems involving affine-in-parameters signal and system models. The benefits-including low computational efficiency, superior tracking ability, and selective updating that permits processor multi-tasking-are enhanced by multiweight (MW) optimization in which the data history is considered in determining update times and optimal weights on the observations. MW optimization for OBE algorithms is introduced, and an example MW-OBE algorithm implementation is developed around the recent quasi-OBE algorithm. Optimality of the solution is discussed, and simulation studies are used to illustrate performance benefits.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2005.861893</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computational efficiency ; Detection, estimation, filtering, equalization, prediction ; Ellipsoids ; Exact sciences and technology ; Filtering ; Filtering algorithms ; Information, signal and communications theory ; Iterative algorithms ; Least squares method ; Mathematical models ; Noise robustness ; Optimization ; Recursive estimation ; Samarium ; Set-membership identification ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal, noise ; system identification ; Technological innovation ; Telecommunications and information theory ; Tracking</subject><ispartof>IEEE transactions on signal processing, 2006-02, Vol.54 (2), p.679-690</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3</citedby><cites>FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1576993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17425358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Joachim, D.</creatorcontrib><creatorcontrib>Deller, J.R.</creatorcontrib><title>Multiweight optimization in optimal bounding ellipsoid algorithms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to traditional least-squares methods for identification and filtering problems involving affine-in-parameters signal and system models. The benefits-including low computational efficiency, superior tracking ability, and selective updating that permits processor multi-tasking-are enhanced by multiweight (MW) optimization in which the data history is considered in determining update times and optimal weights on the observations. MW optimization for OBE algorithms is introduced, and an example MW-OBE algorithm implementation is developed around the recent quasi-OBE algorithm. Optimality of the solution is discussed, and simulation studies are used to illustrate performance benefits.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Ellipsoids</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Noise robustness</subject><subject>Optimization</subject><subject>Recursive estimation</subject><subject>Samarium</subject><subject>Set-membership identification</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>system identification</subject><subject>Technological innovation</subject><subject>Telecommunications and information theory</subject><subject>Tracking</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosoqKtnD16KoJ66O9MkTXIU8QsUBVfwFtI0XSPdZm1aRH-9WSsIHjxlQp55J_MkyQHCFBHkbP74MM0B2FQUKCTZSHZQUsyA8mIz1sBIxgR_3k52Q3gFQEplsZOc3Q1N796tW7z0qV_1buk-de98m7p2vOsmLf3QVq5dpLZp3Cp4V6W6WfjO9S_LsJds1boJdv_nnCRPlxfz8-vs9v7q5vzsNjNEYJ-hoYCCl7q21nIKXOe6JHlOZcWtMZJTU2FlqCRYChAVY6iLopKRqAoa0UlyOuauOv822NCrpQsm_ki31g9BCVnkSIBgJE_-JXMBlAATETz6A776oWvjFkrmgIwQChGajZDpfAidrdWqi1a6D4Wg1uZVNK_W5tVoPnYc_8TqYHRTd7o1Lvy2cZoz8j3-cORcVPL7zHghY8oXqWGL7A</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Joachim, D.</creator><creator>Deller, J.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060201</creationdate><title>Multiweight optimization in optimal bounding ellipsoid algorithms</title><author>Joachim, D. ; Deller, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Ellipsoids</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Noise robustness</topic><topic>Optimization</topic><topic>Recursive estimation</topic><topic>Samarium</topic><topic>Set-membership identification</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>system identification</topic><topic>Technological innovation</topic><topic>Telecommunications and information theory</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joachim, D.</creatorcontrib><creatorcontrib>Deller, J.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joachim, D.</au><au>Deller, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiweight optimization in optimal bounding ellipsoid algorithms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2006-02-01</date><risdate>2006</risdate><volume>54</volume><issue>2</issue><spage>679</spage><epage>690</epage><pages>679-690</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to traditional least-squares methods for identification and filtering problems involving affine-in-parameters signal and system models. The benefits-including low computational efficiency, superior tracking ability, and selective updating that permits processor multi-tasking-are enhanced by multiweight (MW) optimization in which the data history is considered in determining update times and optimal weights on the observations. MW optimization for OBE algorithms is introduced, and an example MW-OBE algorithm implementation is developed around the recent quasi-OBE algorithm. Optimality of the solution is discussed, and simulation studies are used to illustrate performance benefits.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2005.861893</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2006-02, Vol.54 (2), p.679-690
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_896213031
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Computational efficiency
Detection, estimation, filtering, equalization, prediction
Ellipsoids
Exact sciences and technology
Filtering
Filtering algorithms
Information, signal and communications theory
Iterative algorithms
Least squares method
Mathematical models
Noise robustness
Optimization
Recursive estimation
Samarium
Set-membership identification
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
system identification
Technological innovation
Telecommunications and information theory
Tracking
title Multiweight optimization in optimal bounding ellipsoid algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiweight%20optimization%20in%20optimal%20bounding%20ellipsoid%20algorithms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Joachim,%20D.&rft.date=2006-02-01&rft.volume=54&rft.issue=2&rft.spage=679&rft.epage=690&rft.pages=679-690&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2005.861893&rft_dat=%3Cproquest_pasca%3E896213031%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-1c40187bafeee7407a2ab32249d7ecc974cd1dc4931b808d551a66d9224d64ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920153340&rft_id=info:pmid/&rft_ieee_id=1576993&rfr_iscdi=true