Loading…
Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach
This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development an...
Saved in:
Published in: | International journal for numerical methods in engineering 2010-10, Vol.84 (4), p.470-484 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093 |
container_end_page | 484 |
container_issue | 4 |
container_start_page | 470 |
container_title | International journal for numerical methods in engineering |
container_volume | 84 |
creator | Rodič, Tomaž Šuštar, Tomaž Šuštarič, Primož Korelc, Jože |
description | This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2903 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896222745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896222745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093</originalsourceid><addsrcrecordid>eNp1kMuO1DAQRSMEEs2AxCd4g2BBZvyIk3gJo2ZAmteCx9KqOGUwxHGwHaD_hM_FPd2aHZtyuer4XutW1XNGTxml_Gz2eMoVFQ-qDaOqqymn3cNqU1aqlqpnj6snKX2nlDFJxab6u7XWGYdzJvPqMToDE3F-mdCXGWQXZhIsWSKmtEZ8TbLzpcI8kox-wQi5jElaS7uE5O4e2BAJTpByqH-5ZEK97C_OEA-5WBQHH0acyLAja3LzVwIk7fwQpoLAssQA5tvT6pGFKeGz43lSfXq3_Xj-vr68ufhw_uayNoK3olbNaGQjYZDI1b72jDJpBovtwFuDpu9BIErFDB9NN1ID1gKyljaCl4DESfXyoFtsf66YsvblyzhNMGNYk-5VyznvGlnIVwfSxJBSRKuX6DzEnWZU77PXJXu9z76gL46ikEqgNsJsXLrnueA9bdqucPWB--0m3P1XT19fbY-6R96ljH_ueYg_dFHrpP5yfaGVuH37ub1imol_kECl4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896222745</pqid></control><display><type>article</type><title>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rodič, Tomaž ; Šuštar, Tomaž ; Šuštarič, Primož ; Korelc, Jože</creator><creatorcontrib>Rodič, Tomaž ; Šuštar, Tomaž ; Šuštarič, Primož ; Korelc, Jože</creatorcontrib><description>This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2903</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computer simulation ; Constitutive relationships ; Copyrights ; Exact sciences and technology ; Finite element method ; finite elements ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; Polyethylene terephthalates ; pressure ; Radicals ; Sciences and techniques of general use ; Solid mechanics ; Structural and continuum mechanics ; symbolic approach ; time and temperature superposition</subject><ispartof>International journal for numerical methods in engineering, 2010-10, Vol.84 (4), p.470-484</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23280467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodič, Tomaž</creatorcontrib><creatorcontrib>Šuštar, Tomaž</creatorcontrib><creatorcontrib>Šuštarič, Primož</creatorcontrib><creatorcontrib>Korelc, Jože</creatorcontrib><title>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Copyrights</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Polyethylene terephthalates</subject><subject>pressure</subject><subject>Radicals</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>symbolic approach</subject><subject>time and temperature superposition</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMuO1DAQRSMEEs2AxCd4g2BBZvyIk3gJo2ZAmteCx9KqOGUwxHGwHaD_hM_FPd2aHZtyuer4XutW1XNGTxml_Gz2eMoVFQ-qDaOqqymn3cNqU1aqlqpnj6snKX2nlDFJxab6u7XWGYdzJvPqMToDE3F-mdCXGWQXZhIsWSKmtEZ8TbLzpcI8kox-wQi5jElaS7uE5O4e2BAJTpByqH-5ZEK97C_OEA-5WBQHH0acyLAja3LzVwIk7fwQpoLAssQA5tvT6pGFKeGz43lSfXq3_Xj-vr68ufhw_uayNoK3olbNaGQjYZDI1b72jDJpBovtwFuDpu9BIErFDB9NN1ID1gKyljaCl4DESfXyoFtsf66YsvblyzhNMGNYk-5VyznvGlnIVwfSxJBSRKuX6DzEnWZU77PXJXu9z76gL46ikEqgNsJsXLrnueA9bdqucPWB--0m3P1XT19fbY-6R96ljH_ueYg_dFHrpP5yfaGVuH37ub1imol_kECl4g</recordid><startdate>20101022</startdate><enddate>20101022</enddate><creator>Rodič, Tomaž</creator><creator>Šuštar, Tomaž</creator><creator>Šuštarič, Primož</creator><creator>Korelc, Jože</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101022</creationdate><title>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</title><author>Rodič, Tomaž ; Šuštar, Tomaž ; Šuštarič, Primož ; Korelc, Jože</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Copyrights</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Polyethylene terephthalates</topic><topic>pressure</topic><topic>Radicals</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>symbolic approach</topic><topic>time and temperature superposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodič, Tomaž</creatorcontrib><creatorcontrib>Šuštar, Tomaž</creatorcontrib><creatorcontrib>Šuštarič, Primož</creatorcontrib><creatorcontrib>Korelc, Jože</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodič, Tomaž</au><au>Šuštar, Tomaž</au><au>Šuštarič, Primož</au><au>Korelc, Jože</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-10-22</date><risdate>2010</risdate><volume>84</volume><issue>4</issue><spage>470</spage><epage>484</epage><pages>470-484</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2903</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2010-10, Vol.84 (4), p.470-484 |
issn | 0029-5981 1097-0207 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_896222745 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Computer simulation Constitutive relationships Copyrights Exact sciences and technology Finite element method finite elements Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Mathematical analysis Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis. Scientific computation Physics Polyethylene terephthalates pressure Radicals Sciences and techniques of general use Solid mechanics Structural and continuum mechanics symbolic approach time and temperature superposition |
title | Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20numerical%20implementation%20of%20pressure,%20time,%20and%20temperature%20superposition%20for%20elasto-visco-plastic%20material%20model%20by%20using%20a%20symbolic%20approach&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Rodi%C4%8D,%20Toma%C5%BE&rft.date=2010-10-22&rft.volume=84&rft.issue=4&rft.spage=470&rft.epage=484&rft.pages=470-484&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2903&rft_dat=%3Cproquest_cross%3E896222745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896222745&rft_id=info:pmid/&rfr_iscdi=true |