Loading…

Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach

This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development an...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2010-10, Vol.84 (4), p.470-484
Main Authors: Rodič, Tomaž, Šuštar, Tomaž, Šuštarič, Primož, Korelc, Jože
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093
container_end_page 484
container_issue 4
container_start_page 470
container_title International journal for numerical methods in engineering
container_volume 84
creator Rodič, Tomaž
Šuštar, Tomaž
Šuštarič, Primož
Korelc, Jože
description This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2903
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896222745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896222745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093</originalsourceid><addsrcrecordid>eNp1kMuO1DAQRSMEEs2AxCd4g2BBZvyIk3gJo2ZAmteCx9KqOGUwxHGwHaD_hM_FPd2aHZtyuer4XutW1XNGTxml_Gz2eMoVFQ-qDaOqqymn3cNqU1aqlqpnj6snKX2nlDFJxab6u7XWGYdzJvPqMToDE3F-mdCXGWQXZhIsWSKmtEZ8TbLzpcI8kox-wQi5jElaS7uE5O4e2BAJTpByqH-5ZEK97C_OEA-5WBQHH0acyLAja3LzVwIk7fwQpoLAssQA5tvT6pGFKeGz43lSfXq3_Xj-vr68ufhw_uayNoK3olbNaGQjYZDI1b72jDJpBovtwFuDpu9BIErFDB9NN1ID1gKyljaCl4DESfXyoFtsf66YsvblyzhNMGNYk-5VyznvGlnIVwfSxJBSRKuX6DzEnWZU77PXJXu9z76gL46ikEqgNsJsXLrnueA9bdqucPWB--0m3P1XT19fbY-6R96ljH_ueYg_dFHrpP5yfaGVuH37ub1imol_kECl4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896222745</pqid></control><display><type>article</type><title>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rodič, Tomaž ; Šuštar, Tomaž ; Šuštarič, Primož ; Korelc, Jože</creator><creatorcontrib>Rodič, Tomaž ; Šuštar, Tomaž ; Šuštarič, Primož ; Korelc, Jože</creatorcontrib><description>This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2903</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computer simulation ; Constitutive relationships ; Copyrights ; Exact sciences and technology ; Finite element method ; finite elements ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; Polyethylene terephthalates ; pressure ; Radicals ; Sciences and techniques of general use ; Solid mechanics ; Structural and continuum mechanics ; symbolic approach ; time and temperature superposition</subject><ispartof>International journal for numerical methods in engineering, 2010-10, Vol.84 (4), p.470-484</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23280467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodič, Tomaž</creatorcontrib><creatorcontrib>Šuštar, Tomaž</creatorcontrib><creatorcontrib>Šuštarič, Primož</creatorcontrib><creatorcontrib>Korelc, Jože</creatorcontrib><title>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Copyrights</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Polyethylene terephthalates</subject><subject>pressure</subject><subject>Radicals</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>symbolic approach</subject><subject>time and temperature superposition</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMuO1DAQRSMEEs2AxCd4g2BBZvyIk3gJo2ZAmteCx9KqOGUwxHGwHaD_hM_FPd2aHZtyuer4XutW1XNGTxml_Gz2eMoVFQ-qDaOqqymn3cNqU1aqlqpnj6snKX2nlDFJxab6u7XWGYdzJvPqMToDE3F-mdCXGWQXZhIsWSKmtEZ8TbLzpcI8kox-wQi5jElaS7uE5O4e2BAJTpByqH-5ZEK97C_OEA-5WBQHH0acyLAja3LzVwIk7fwQpoLAssQA5tvT6pGFKeGz43lSfXq3_Xj-vr68ufhw_uayNoK3olbNaGQjYZDI1b72jDJpBovtwFuDpu9BIErFDB9NN1ID1gKyljaCl4DESfXyoFtsf66YsvblyzhNMGNYk-5VyznvGlnIVwfSxJBSRKuX6DzEnWZU77PXJXu9z76gL46ikEqgNsJsXLrnueA9bdqucPWB--0m3P1XT19fbY-6R96ljH_ueYg_dFHrpP5yfaGVuH37ub1imol_kECl4g</recordid><startdate>20101022</startdate><enddate>20101022</enddate><creator>Rodič, Tomaž</creator><creator>Šuštar, Tomaž</creator><creator>Šuštarič, Primož</creator><creator>Korelc, Jože</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101022</creationdate><title>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</title><author>Rodič, Tomaž ; Šuštar, Tomaž ; Šuštarič, Primož ; Korelc, Jože</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Copyrights</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Polyethylene terephthalates</topic><topic>pressure</topic><topic>Radicals</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>symbolic approach</topic><topic>time and temperature superposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodič, Tomaž</creatorcontrib><creatorcontrib>Šuštar, Tomaž</creatorcontrib><creatorcontrib>Šuštarič, Primož</creatorcontrib><creatorcontrib>Korelc, Jože</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodič, Tomaž</au><au>Šuštar, Tomaž</au><au>Šuštarič, Primož</au><au>Korelc, Jože</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-10-22</date><risdate>2010</risdate><volume>84</volume><issue>4</issue><spage>470</spage><epage>484</epage><pages>470-484</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2903</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2010-10, Vol.84 (4), p.470-484
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_896222745
source Wiley-Blackwell Read & Publish Collection
subjects Computer simulation
Constitutive relationships
Copyrights
Exact sciences and technology
Finite element method
finite elements
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical analysis
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
Polyethylene terephthalates
pressure
Radicals
Sciences and techniques of general use
Solid mechanics
Structural and continuum mechanics
symbolic approach
time and temperature superposition
title Efficient numerical implementation of pressure, time, and temperature superposition for elasto-visco-plastic material model by using a symbolic approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20numerical%20implementation%20of%20pressure,%20time,%20and%20temperature%20superposition%20for%20elasto-visco-plastic%20material%20model%20by%20using%20a%20symbolic%20approach&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Rodi%C4%8D,%20Toma%C5%BE&rft.date=2010-10-22&rft.volume=84&rft.issue=4&rft.spage=470&rft.epage=484&rft.pages=470-484&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2903&rft_dat=%3Cproquest_cross%3E896222745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3263-94dc545ab5e29ab5e81015cbfe6b26cec88a3ee591c2dc7d0caffae1604321093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896222745&rft_id=info:pmid/&rfr_iscdi=true