Loading…

Multicast-based mobility: a novel architecture for efficient micromobility

Handover performance is very important when evaluating IP mobility protocols. If not performed efficiently, handover delays, jitters, and packet loss directly impact application performance. We propose a new architecture for providing efficient handover, while being able to coexist with other protoc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2004-05, Vol.22 (4), p.677-690
Main Authors: Helmy, A.A.-G., Jaseemuddin, M., Bhaskara, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Handover performance is very important when evaluating IP mobility protocols. If not performed efficiently, handover delays, jitters, and packet loss directly impact application performance. We propose a new architecture for providing efficient handover, while being able to coexist with other protocols. We propose a paradigm for multicast-based micromobility (M&M), where a visiting mobile is assigned a multicast address to use while moving within a domain. The multicast address is obtained using algorithmic mapping, and handover is achieved using multicast join/prune mechanisms. This paper outlines a framework for the design and evaluation of micromobility protocols. We define a suite of protocols (called candidate access router set) to enable multiple-access routers to receive traffic for the mobile node. By changing the number of such routers, timing, and buffering parameters, the protocol may be fine-tuned for specific technologies (e.g., 802.11) and handover scenarios. Extensive NS-2 simulations are used to compare M&M with other micromobility schemes-cellular Internet protocol (CIP) and handoff-aware wireless access Internet infrastructure (HAWAII). For proactive handover scenarios, our results show that M&M and CIP show lower handover delay and packet reordering than HAWAII. M&M, however, handles multiple border routers in a domain, where CIP fails. Also, for scenarios of reactive handover and coverage gaps M&M clearly outperforms CIP and HAWAII.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2004.826002