Loading…

Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects

The vibrational behavior of electrostatically actuated microstructures subjected to nonlinear squeeze film damping and in-plane forces is investigated. First-Order Shear Deformation Theory is used to model dynamical system by means of finite element method, while finite difference method is applied...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2009-04, Vol.14 (4), p.1664-1678
Main Authors: Moghimi Zand, M., Ahmadian, M.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vibrational behavior of electrostatically actuated microstructures subjected to nonlinear squeeze film damping and in-plane forces is investigated. First-Order Shear Deformation Theory is used to model dynamical system by means of finite element method, while finite difference method is applied to solve the nonlinear Reynolds equation of squeeze film damping simultaneously. Vibrational analysis of microplates is performed by solving eigenvalue problem, after validating the model by pull-in phenomenon and transient behavior. In addition, considering nonlinear squeeze film damping and step-input actuations, response frequencies of microplates are calculated. Effect of ambient pressure and in-plane forces on dynamic pull-in phenomenon is also studied. Results for simplified models are verified and are in good agreement with the published literature. This investigation can reveal nonlinear vibrational behavior of microstructures.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2008.05.009