Loading…

An elementary construction of codes from the groups of units of residue rings of polynomials

In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2005-01, Vol.51 (1), p.419-420
Main Authors: Reid, L., Wickham, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3
container_end_page 420
container_issue 1
container_start_page 419
container_title IEEE transactions on information theory
container_volume 51
creator Reid, L.
Wickham, C.
description In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.
doi_str_mv 10.1109/TIT.2004.839540
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_896244514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1377526</ieee_id><sourcerecordid>774153151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3</originalsourceid><addsrcrecordid>eNp9kblLBDEUxoMouB61hc0gqNWsuY9SxGNhwWbthJDJZDQyk6zJTLH_vVlXECys3vV7H7z3AXCG4BwhqG5Wi9UcQ0jnkihG4R6YIcZErTij-2AGIZK1olQegqOcP0pJGcIz8HobKte7wYXRpE1lY8hjmuzoY6hiV-rW5apLcajGd1e9pTit83YwBT9-J8ll306uSj68fTfWsd-EOHjT5xNw0JXgTn_iMXh5uF_dPdXL58fF3e2ytoSwsRaGdcga1HZYYtsS1BrOhIXCNsw2DYOsUYZzjlBLuJJMNlAY23ELG2FwY8gxuN7prlP8nFwe9eCzdX1vgotT1lJxTMu9tJBX_5JYQiIwkQW8-AN-xCmFcoVGiikoimKBbnaQTTHn5Dq9Tn4of9QI6q0pupiit6bonSll4_JH1mRr-i6ZYH3-XeOUCoK33PmO88653zERgmFOvgCe-5V_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195907624</pqid></control><display><type>article</type><title>An elementary construction of codes from the groups of units of residue rings of polynomials</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Reid, L. ; Wickham, C.</creator><creatorcontrib>Reid, L. ; Wickham, C.</creatorcontrib><description>In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2004.839540</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Character generation ; Codes ; Coding, codes ; Construction ; Exact sciences and technology ; Galois fields ; Induction generators ; Information systems ; Information theory ; Information, signal and communications theory ; Linear code ; Mathematics ; Parity check codes ; Polynomials ; residue rings ; Residues ; Signal and communications theory ; Telecommunications and information theory ; units</subject><ispartof>IEEE transactions on information theory, 2005-01, Vol.51 (1), p.419-420</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1377526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16447320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, L.</creatorcontrib><creatorcontrib>Wickham, C.</creatorcontrib><title>An elementary construction of codes from the groups of units of residue rings of polynomials</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.</description><subject>Applied sciences</subject><subject>Character generation</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Galois fields</subject><subject>Induction generators</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Linear code</subject><subject>Mathematics</subject><subject>Parity check codes</subject><subject>Polynomials</subject><subject>residue rings</subject><subject>Residues</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>units</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kblLBDEUxoMouB61hc0gqNWsuY9SxGNhwWbthJDJZDQyk6zJTLH_vVlXECys3vV7H7z3AXCG4BwhqG5Wi9UcQ0jnkihG4R6YIcZErTij-2AGIZK1olQegqOcP0pJGcIz8HobKte7wYXRpE1lY8hjmuzoY6hiV-rW5apLcajGd1e9pTit83YwBT9-J8ll306uSj68fTfWsd-EOHjT5xNw0JXgTn_iMXh5uF_dPdXL58fF3e2ytoSwsRaGdcga1HZYYtsS1BrOhIXCNsw2DYOsUYZzjlBLuJJMNlAY23ELG2FwY8gxuN7prlP8nFwe9eCzdX1vgotT1lJxTMu9tJBX_5JYQiIwkQW8-AN-xCmFcoVGiikoimKBbnaQTTHn5Dq9Tn4of9QI6q0pupiit6bonSll4_JH1mRr-i6ZYH3-XeOUCoK33PmO88653zERgmFOvgCe-5V_</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Reid, L.</creator><creator>Wickham, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>An elementary construction of codes from the groups of units of residue rings of polynomials</title><author>Reid, L. ; Wickham, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Character generation</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Galois fields</topic><topic>Induction generators</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Linear code</topic><topic>Mathematics</topic><topic>Parity check codes</topic><topic>Polynomials</topic><topic>residue rings</topic><topic>Residues</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>units</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, L.</creatorcontrib><creatorcontrib>Wickham, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, L.</au><au>Wickham, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An elementary construction of codes from the groups of units of residue rings of polynomials</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2005-01</date><risdate>2005</risdate><volume>51</volume><issue>1</issue><spage>419</spage><epage>420</epage><pages>419-420</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2004.839540</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2005-01, Vol.51 (1), p.419-420
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_896244514
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Character generation
Codes
Coding, codes
Construction
Exact sciences and technology
Galois fields
Induction generators
Information systems
Information theory
Information, signal and communications theory
Linear code
Mathematics
Parity check codes
Polynomials
residue rings
Residues
Signal and communications theory
Telecommunications and information theory
units
title An elementary construction of codes from the groups of units of residue rings of polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20elementary%20construction%20of%20codes%20from%20the%20groups%20of%20units%20of%20residue%20rings%20of%20polynomials&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Reid,%20L.&rft.date=2005-01&rft.volume=51&rft.issue=1&rft.spage=419&rft.epage=420&rft.pages=419-420&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2004.839540&rft_dat=%3Cproquest_pasca%3E774153151%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195907624&rft_id=info:pmid/&rft_ieee_id=1377526&rfr_iscdi=true