Loading…
An elementary construction of codes from the groups of units of residue rings of polynomials
In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.
Saved in:
Published in: | IEEE transactions on information theory 2005-01, Vol.51 (1), p.419-420 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3 |
container_end_page | 420 |
container_issue | 1 |
container_start_page | 419 |
container_title | IEEE transactions on information theory |
container_volume | 51 |
creator | Reid, L. Wickham, C. |
description | In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix. |
doi_str_mv | 10.1109/TIT.2004.839540 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_896244514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1377526</ieee_id><sourcerecordid>774153151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3</originalsourceid><addsrcrecordid>eNp9kblLBDEUxoMouB61hc0gqNWsuY9SxGNhwWbthJDJZDQyk6zJTLH_vVlXECys3vV7H7z3AXCG4BwhqG5Wi9UcQ0jnkihG4R6YIcZErTij-2AGIZK1olQegqOcP0pJGcIz8HobKte7wYXRpE1lY8hjmuzoY6hiV-rW5apLcajGd1e9pTit83YwBT9-J8ll306uSj68fTfWsd-EOHjT5xNw0JXgTn_iMXh5uF_dPdXL58fF3e2ytoSwsRaGdcga1HZYYtsS1BrOhIXCNsw2DYOsUYZzjlBLuJJMNlAY23ELG2FwY8gxuN7prlP8nFwe9eCzdX1vgotT1lJxTMu9tJBX_5JYQiIwkQW8-AN-xCmFcoVGiikoimKBbnaQTTHn5Dq9Tn4of9QI6q0pupiit6bonSll4_JH1mRr-i6ZYH3-XeOUCoK33PmO88653zERgmFOvgCe-5V_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195907624</pqid></control><display><type>article</type><title>An elementary construction of codes from the groups of units of residue rings of polynomials</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Reid, L. ; Wickham, C.</creator><creatorcontrib>Reid, L. ; Wickham, C.</creatorcontrib><description>In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2004.839540</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Character generation ; Codes ; Coding, codes ; Construction ; Exact sciences and technology ; Galois fields ; Induction generators ; Information systems ; Information theory ; Information, signal and communications theory ; Linear code ; Mathematics ; Parity check codes ; Polynomials ; residue rings ; Residues ; Signal and communications theory ; Telecommunications and information theory ; units</subject><ispartof>IEEE transactions on information theory, 2005-01, Vol.51 (1), p.419-420</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1377526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16447320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, L.</creatorcontrib><creatorcontrib>Wickham, C.</creatorcontrib><title>An elementary construction of codes from the groups of units of residue rings of polynomials</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.</description><subject>Applied sciences</subject><subject>Character generation</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Galois fields</subject><subject>Induction generators</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Linear code</subject><subject>Mathematics</subject><subject>Parity check codes</subject><subject>Polynomials</subject><subject>residue rings</subject><subject>Residues</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>units</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kblLBDEUxoMouB61hc0gqNWsuY9SxGNhwWbthJDJZDQyk6zJTLH_vVlXECys3vV7H7z3AXCG4BwhqG5Wi9UcQ0jnkihG4R6YIcZErTij-2AGIZK1olQegqOcP0pJGcIz8HobKte7wYXRpE1lY8hjmuzoY6hiV-rW5apLcajGd1e9pTit83YwBT9-J8ll306uSj68fTfWsd-EOHjT5xNw0JXgTn_iMXh5uF_dPdXL58fF3e2ytoSwsRaGdcga1HZYYtsS1BrOhIXCNsw2DYOsUYZzjlBLuJJMNlAY23ELG2FwY8gxuN7prlP8nFwe9eCzdX1vgotT1lJxTMu9tJBX_5JYQiIwkQW8-AN-xCmFcoVGiikoimKBbnaQTTHn5Dq9Tn4of9QI6q0pupiit6bonSll4_JH1mRr-i6ZYH3-XeOUCoK33PmO88653zERgmFOvgCe-5V_</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Reid, L.</creator><creator>Wickham, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>An elementary construction of codes from the groups of units of residue rings of polynomials</title><author>Reid, L. ; Wickham, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Character generation</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Galois fields</topic><topic>Induction generators</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Linear code</topic><topic>Mathematics</topic><topic>Parity check codes</topic><topic>Polynomials</topic><topic>residue rings</topic><topic>Residues</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>units</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, L.</creatorcontrib><creatorcontrib>Wickham, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, L.</au><au>Wickham, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An elementary construction of codes from the groups of units of residue rings of polynomials</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2005-01</date><risdate>2005</risdate><volume>51</volume><issue>1</issue><spage>419</spage><epage>420</epage><pages>419-420</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this note, we present an elementary verification of the minimum distance of some codes constructed by Xing (2002). We show that the codes obtained from this construction are subsets of cosets of linear codes with a given parity-check matrix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2004.839540</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2005-01, Vol.51 (1), p.419-420 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_896244514 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Character generation Codes Coding, codes Construction Exact sciences and technology Galois fields Induction generators Information systems Information theory Information, signal and communications theory Linear code Mathematics Parity check codes Polynomials residue rings Residues Signal and communications theory Telecommunications and information theory units |
title | An elementary construction of codes from the groups of units of residue rings of polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20elementary%20construction%20of%20codes%20from%20the%20groups%20of%20units%20of%20residue%20rings%20of%20polynomials&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Reid,%20L.&rft.date=2005-01&rft.volume=51&rft.issue=1&rft.spage=419&rft.epage=420&rft.pages=419-420&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2004.839540&rft_dat=%3Cproquest_pasca%3E774153151%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-7a5f1ca1df282cd31da657c07cb5cbb505b9a66611d369858b07acf6c0b7a2ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195907624&rft_id=info:pmid/&rft_ieee_id=1377526&rfr_iscdi=true |