Loading…

Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing

In this paper, an automated adaptive remeshing procedure is presented for simulation of arbitrary shape crack growth in multiple cracked bodies. The Zienkiewicz–Zhu error estimator is employed in conjunction with the modified superconvergent patch recovery (SPR) technique to obtain more accurate est...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2011-02, Vol.85 (8), p.1017-1048
Main Authors: Azadi, H., Khoei, A. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an automated adaptive remeshing procedure is presented for simulation of arbitrary shape crack growth in multiple cracked bodies. The Zienkiewicz–Zhu error estimator is employed in conjunction with the modified superconvergent patch recovery (SPR) technique to obtain more accurate estimation of error. A stability analysis is performed to determine active cracks from a set of competitive cracks. Various crack growth criteria together with the respective crack trajectory prediction are compared. Several numerical examples are illustrated to demonstrate the efficiency, robustness and accuracy of computational algorithm in the simulation of multiple crack growth. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
1097-0207
DOI:10.1002/nme.3002