Loading…

Dynamin: Functional Design of a Membrane Fission Catalyst

Dynamin, best studied for its role in clathrin-mediated endocytosis, is the prototypical member of a family of multidomain GTPases involved in fission and remodeling of multiple organelles. Recent studies have shown that dynamin alone can catalyze fission of membrane tubules and vesicle formation fr...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of cell and developmental biology 2011-01, Vol.27 (1), p.79-105
Main Authors: Schmid, Sandra L, Frolov, Vadim A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamin, best studied for its role in clathrin-mediated endocytosis, is the prototypical member of a family of multidomain GTPases involved in fission and remodeling of multiple organelles. Recent studies have shown that dynamin alone can catalyze fission of membrane tubules and vesicle formation from planar lipid templates. Thus, dynamin appears to be a self-sufficient fission machine. Here we review the biochemical activities and structural features of dynamin required for fission activity. As all changes in membrane topology require energetically unfavorable rearrangements of the lipid bilayer, we discuss the interplay between dynamin and its lipid substrates that are critical to defining a nonleaky pathway to membrane fission. We propose a two-stage model for dynamin-catalyzed fission. In stage one, dynamin's mechanochemical activities induce localized curvature stress and position its lipid-interacting pleckstrin homology domains to create a catalytic center that, in stage two, guides lipid remodeling through hemifission intermediates to drive membrane fission.
ISSN:1081-0706
1530-8995
DOI:10.1146/annurev-cellbio-100109-104016