Loading…

The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site

Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2010-07, Vol.400 (3), p.379-392
Main Author: Harmer, Nicholas J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3
cites cdi_FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3
container_end_page 392
container_issue 3
container_start_page 379
container_title Journal of molecular biology
container_volume 400
creator Harmer, Nicholas J.
description Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d- glycero- d- manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.
doi_str_mv 10.1016/j.jmb.2010.04.058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899142128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283610004468</els_id><sourcerecordid>733981758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1URJfCD-BS-dZTFtuxE1s9tRXQSpVAbLlwsbzOpPE2iVPbWYlfwV_G6RaO9DQazffeSO8h9IGSNSW0-rhb74btmpG8E74mQr5CK0qkKmRVyiO0IoSxgsmyOkZvY9wRQkTJ5Rt0zAjnNSdyhX7fdYA3Kcw2zQGwb_EGGt_BlObeRyjq4lvn49SZBPgm-gGCiYDb4Ad8OYeHzvcNBGfwFGFu_GD6Hhz-DnswfcQG_3SjxZdubNx4jzcum5iEU355DSak5d2yXNjk9vB0f4det1kK75_nCfrx-dPd1XVx-_XLzdXFbWE5q1OhRM351lKqpLBQG8W5UI0yFJjhQlJBlTKcE2hzKhIkp7KSomLCtMKUlSlP0NnBdwr-cYaY9OCihb43I_g5aqkU5Yzm8F4i67JUktZiIemBtMHHGKDVU3CDCb80JXopTO90LkwvhWnCNXnSnD67z9sBmn-Kvw1l4PwAQE5j7yDoaB2MFhoXwCbdePcf-z8gnqX5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733981758</pqid></control><display><type>article</type><title>The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site</title><source>ScienceDirect Journals</source><creator>Harmer, Nicholas J.</creator><creatorcontrib>Harmer, Nicholas J.</creatorcontrib><description>Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d- glycero- d- manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2010.04.058</identifier><identifier>PMID: 20447408</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Binding Sites ; Burkholderia pseudomallei ; Burkholderia pseudomallei - enzymology ; capsule biosynthesis ; Catalytic Domain ; Crystallography, X-Ray ; GmhA ; isomerase ; Metabolic Networks and Pathways ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary ; Racemases and Epimerases - chemistry ; Sequence Alignment ; Sugar Phosphates - metabolism ; Zinc - metabolism ; zinc binding</subject><ispartof>Journal of molecular biology, 2010-07, Vol.400 (3), p.379-392</ispartof><rights>2010 Elsevier Ltd</rights><rights>2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3</citedby><cites>FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20447408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harmer, Nicholas J.</creatorcontrib><title>The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d- glycero- d- manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Binding Sites</subject><subject>Burkholderia pseudomallei</subject><subject>Burkholderia pseudomallei - enzymology</subject><subject>capsule biosynthesis</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>GmhA</subject><subject>isomerase</subject><subject>Metabolic Networks and Pathways</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Racemases and Epimerases - chemistry</subject><subject>Sequence Alignment</subject><subject>Sugar Phosphates - metabolism</subject><subject>Zinc - metabolism</subject><subject>zinc binding</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS1URJfCD-BS-dZTFtuxE1s9tRXQSpVAbLlwsbzOpPE2iVPbWYlfwV_G6RaO9DQazffeSO8h9IGSNSW0-rhb74btmpG8E74mQr5CK0qkKmRVyiO0IoSxgsmyOkZvY9wRQkTJ5Rt0zAjnNSdyhX7fdYA3Kcw2zQGwb_EGGt_BlObeRyjq4lvn49SZBPgm-gGCiYDb4Ad8OYeHzvcNBGfwFGFu_GD6Hhz-DnswfcQG_3SjxZdubNx4jzcum5iEU355DSak5d2yXNjk9vB0f4det1kK75_nCfrx-dPd1XVx-_XLzdXFbWE5q1OhRM351lKqpLBQG8W5UI0yFJjhQlJBlTKcE2hzKhIkp7KSomLCtMKUlSlP0NnBdwr-cYaY9OCihb43I_g5aqkU5Yzm8F4i67JUktZiIemBtMHHGKDVU3CDCb80JXopTO90LkwvhWnCNXnSnD67z9sBmn-Kvw1l4PwAQE5j7yDoaB2MFhoXwCbdePcf-z8gnqX5</recordid><startdate>20100716</startdate><enddate>20100716</enddate><creator>Harmer, Nicholas J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20100716</creationdate><title>The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site</title><author>Harmer, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Binding Sites</topic><topic>Burkholderia pseudomallei</topic><topic>Burkholderia pseudomallei - enzymology</topic><topic>capsule biosynthesis</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>GmhA</topic><topic>isomerase</topic><topic>Metabolic Networks and Pathways</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Racemases and Epimerases - chemistry</topic><topic>Sequence Alignment</topic><topic>Sugar Phosphates - metabolism</topic><topic>Zinc - metabolism</topic><topic>zinc binding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harmer, Nicholas J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harmer, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2010-07-16</date><risdate>2010</risdate><volume>400</volume><issue>3</issue><spage>379</spage><epage>392</epage><pages>379-392</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d- glycero- d- manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20447408</pmid><doi>10.1016/j.jmb.2010.04.058</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2010-07, Vol.400 (3), p.379-392
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_899142128
source ScienceDirect Journals
subjects Amino Acid Sequence
Bacterial Proteins - chemistry
Binding Sites
Burkholderia pseudomallei
Burkholderia pseudomallei - enzymology
capsule biosynthesis
Catalytic Domain
Crystallography, X-Ray
GmhA
isomerase
Metabolic Networks and Pathways
Models, Molecular
Molecular Sequence Data
Protein Binding
Protein Structure, Tertiary
Racemases and Epimerases - chemistry
Sequence Alignment
Sugar Phosphates - metabolism
Zinc - metabolism
zinc binding
title The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20Sedoheptulose-7-Phosphate%20Isomerase%20from%20Burkholderia%20pseudomallei%20Reveals%20a%20Zinc%20Binding%20Site%20at%20the%20Heart%20of%20the%20Active%20Site&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Harmer,%20Nicholas%20J.&rft.date=2010-07-16&rft.volume=400&rft.issue=3&rft.spage=379&rft.epage=392&rft.pages=379-392&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2010.04.058&rft_dat=%3Cproquest_cross%3E733981758%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-95744bc11985ce7a94459d9a1e2a45815199a440ef0588e8418685625af5a36a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733981758&rft_id=info:pmid/20447408&rfr_iscdi=true