Loading…

Second-order space-time climate difference statistics

An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally betw...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2001-01, Vol.17 (2-3), p.213-218
Main Authors: BOER, G. J, LAMBERT, S. J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073
cites
container_end_page 218
container_issue 2-3
container_start_page 213
container_title Climate dynamics
container_volume 17
creator BOER, G. J
LAMBERT, S. J
description An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.
doi_str_mv 10.1007/pl00013735
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899156317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18497256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq7Vi7-gKCgI1Xw2yVEWv2BBQT2XZDqBLt22Jt2D_3677OrBg6e5PPMy8xJyzugto1TfDS2llAkt1AGZMSl4QY2Vh2RGraCFVlodk5OUlhOSpeYzot4R-q4u-lhjzNPgAIuxWWEObbNyI-Z1EwJG7ADzNLqxSWMD6ZQcBdcmPNvPjHw-PnzMn4vF69PL_H5RgJBqLJwRWgfvPffBglKeKxFqRAh1aQJHygUDYBp4MNz6QD0N4Kg32pZeUS0ycr3LHWL_tcY0VqsmAbat67Bfp8pYy1Qp2FZe_SuZkVbzyWbk4g9c9uvYTV9UxkjDlZ2uysjNDkHsU4oYqiFOdcTvitFqW3T1tvgpesKX-0SXwLUhug6a9LthmZRaiA0n13vO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884825902</pqid></control><display><type>article</type><title>Second-order space-time climate difference statistics</title><source>Springer Nature</source><creator>BOER, G. J ; LAMBERT, S. J</creator><creatorcontrib>BOER, G. J ; LAMBERT, S. J</creatorcontrib><description>An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/pl00013735</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Air temperature ; Climate change ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Simulation ; Surface temperature ; Temperature ; Weather forecasting</subject><ispartof>Climate dynamics, 2001-01, Vol.17 (2-3), p.213-218</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=914473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOER, G. J</creatorcontrib><creatorcontrib>LAMBERT, S. J</creatorcontrib><title>Second-order space-time climate difference statistics</title><title>Climate dynamics</title><description>An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.</description><subject>Air temperature</subject><subject>Climate change</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Weather forecasting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq7Vi7-gKCgI1Xw2yVEWv2BBQT2XZDqBLt22Jt2D_3677OrBg6e5PPMy8xJyzugto1TfDS2llAkt1AGZMSl4QY2Vh2RGraCFVlodk5OUlhOSpeYzot4R-q4u-lhjzNPgAIuxWWEObbNyI-Z1EwJG7ADzNLqxSWMD6ZQcBdcmPNvPjHw-PnzMn4vF69PL_H5RgJBqLJwRWgfvPffBglKeKxFqRAh1aQJHygUDYBp4MNz6QD0N4Kg32pZeUS0ycr3LHWL_tcY0VqsmAbat67Bfp8pYy1Qp2FZe_SuZkVbzyWbk4g9c9uvYTV9UxkjDlZ2uysjNDkHsU4oYqiFOdcTvitFqW3T1tvgpesKX-0SXwLUhug6a9LthmZRaiA0n13vO</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>BOER, G. J</creator><creator>LAMBERT, S. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20010101</creationdate><title>Second-order space-time climate difference statistics</title><author>BOER, G. J ; LAMBERT, S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Air temperature</topic><topic>Climate change</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOER, G. J</creatorcontrib><creatorcontrib>LAMBERT, S. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOER, G. J</au><au>LAMBERT, S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order space-time climate difference statistics</atitle><jtitle>Climate dynamics</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>17</volume><issue>2-3</issue><spage>213</spage><epage>218</epage><pages>213-218</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/pl00013735</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2001-01, Vol.17 (2-3), p.213-218
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_899156317
source Springer Nature
subjects Air temperature
Climate change
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Meteorology
Simulation
Surface temperature
Temperature
Weather forecasting
title Second-order space-time climate difference statistics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20space-time%20climate%20difference%20statistics&rft.jtitle=Climate%20dynamics&rft.au=BOER,%20G.%20J&rft.date=2001-01-01&rft.volume=17&rft.issue=2-3&rft.spage=213&rft.epage=218&rft.pages=213-218&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/pl00013735&rft_dat=%3Cproquest_cross%3E18497256%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884825902&rft_id=info:pmid/&rfr_iscdi=true