Loading…
Second-order space-time climate difference statistics
An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally betw...
Saved in:
Published in: | Climate dynamics 2001-01, Vol.17 (2-3), p.213-218 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073 |
---|---|
cites | |
container_end_page | 218 |
container_issue | 2-3 |
container_start_page | 213 |
container_title | Climate dynamics |
container_volume | 17 |
creator | BOER, G. J LAMBERT, S. J |
description | An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented. |
doi_str_mv | 10.1007/pl00013735 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899156317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18497256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq7Vi7-gKCgI1Xw2yVEWv2BBQT2XZDqBLt22Jt2D_3677OrBg6e5PPMy8xJyzugto1TfDS2llAkt1AGZMSl4QY2Vh2RGraCFVlodk5OUlhOSpeYzot4R-q4u-lhjzNPgAIuxWWEObbNyI-Z1EwJG7ADzNLqxSWMD6ZQcBdcmPNvPjHw-PnzMn4vF69PL_H5RgJBqLJwRWgfvPffBglKeKxFqRAh1aQJHygUDYBp4MNz6QD0N4Kg32pZeUS0ycr3LHWL_tcY0VqsmAbat67Bfp8pYy1Qp2FZe_SuZkVbzyWbk4g9c9uvYTV9UxkjDlZ2uysjNDkHsU4oYqiFOdcTvitFqW3T1tvgpesKX-0SXwLUhug6a9LthmZRaiA0n13vO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884825902</pqid></control><display><type>article</type><title>Second-order space-time climate difference statistics</title><source>Springer Nature</source><creator>BOER, G. J ; LAMBERT, S. J</creator><creatorcontrib>BOER, G. J ; LAMBERT, S. J</creatorcontrib><description>An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/pl00013735</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Air temperature ; Climate change ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Simulation ; Surface temperature ; Temperature ; Weather forecasting</subject><ispartof>Climate dynamics, 2001-01, Vol.17 (2-3), p.213-218</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=914473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOER, G. J</creatorcontrib><creatorcontrib>LAMBERT, S. J</creatorcontrib><title>Second-order space-time climate difference statistics</title><title>Climate dynamics</title><description>An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.</description><subject>Air temperature</subject><subject>Climate change</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Weather forecasting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq7Vi7-gKCgI1Xw2yVEWv2BBQT2XZDqBLt22Jt2D_3677OrBg6e5PPMy8xJyzugto1TfDS2llAkt1AGZMSl4QY2Vh2RGraCFVlodk5OUlhOSpeYzot4R-q4u-lhjzNPgAIuxWWEObbNyI-Z1EwJG7ADzNLqxSWMD6ZQcBdcmPNvPjHw-PnzMn4vF69PL_H5RgJBqLJwRWgfvPffBglKeKxFqRAh1aQJHygUDYBp4MNz6QD0N4Kg32pZeUS0ycr3LHWL_tcY0VqsmAbat67Bfp8pYy1Qp2FZe_SuZkVbzyWbk4g9c9uvYTV9UxkjDlZ2uysjNDkHsU4oYqiFOdcTvitFqW3T1tvgpesKX-0SXwLUhug6a9LthmZRaiA0n13vO</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>BOER, G. J</creator><creator>LAMBERT, S. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20010101</creationdate><title>Second-order space-time climate difference statistics</title><author>BOER, G. J ; LAMBERT, S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Air temperature</topic><topic>Climate change</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOER, G. J</creatorcontrib><creatorcontrib>LAMBERT, S. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOER, G. J</au><au>LAMBERT, S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order space-time climate difference statistics</atitle><jtitle>Climate dynamics</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>17</volume><issue>2-3</issue><spage>213</spage><epage>218</epage><pages>213-218</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>An approach to the calculation and display of second order space-time difference statistics, suitable for various applications ranging from weather forecasting to climate simulation, is discussed. The representation of the space-time agreement between model and observed quantities (or generally between any two data sets) depends on treating deterministic and random components of the variance in an appropriate way depending on context. A diagram to display the second order mean square difference, the correlation, and the ratio of variances on a single diagram in an intuitive way is also proposed. An example, comparing observed and simulated surface air temperatures from a group of models in the Coupled Model Intercomparison Program (CMIP), is presented.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/pl00013735</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2001-01, Vol.17 (2-3), p.213-218 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_899156317 |
source | Springer Nature |
subjects | Air temperature Climate change Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Meteorology Simulation Surface temperature Temperature Weather forecasting |
title | Second-order space-time climate difference statistics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20space-time%20climate%20difference%20statistics&rft.jtitle=Climate%20dynamics&rft.au=BOER,%20G.%20J&rft.date=2001-01-01&rft.volume=17&rft.issue=2-3&rft.spage=213&rft.epage=218&rft.pages=213-218&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/pl00013735&rft_dat=%3Cproquest_cross%3E18497256%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-a8377fbbb2bf9c55b253fdeecfd68f2e0231cc17c2f829bf0b0fca0b8796b5073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884825902&rft_id=info:pmid/&rfr_iscdi=true |