Loading…

Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate

Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near ro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2011-09, Vol.192 (3), p.1314-1320
Main Authors: Vargeese, Anuj A, Muralidharan, Krishnamurthi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43
cites cdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43
container_end_page 1320
container_issue 3
container_start_page 1314
container_title Journal of hazardous materials
container_volume 192
creator Vargeese, Anuj A
Muralidharan, Krishnamurthi
description Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.
doi_str_mv 10.1016/j.jhazmat.2011.06.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899156380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899156380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</originalsourceid><addsrcrecordid>eNqFkUtuFDEQhi1ERIbAEQDvYNMd2-VXL6OIlxQpiyRr43G7GQ_t9tD2SJmsUK7ADXMSHM2QJaxKqvrqL5U-hN5Q0lJC5em6Xa_sXbSlZYTSlsiWgHyGFlQraABAPkcLAoQ3oDt-jF7mvCaEUCX4C3TMqOKMg1igb2eTLTb7h1-_l3NKP0LxOIZb3-PNqrbxZKeEr8Plw_09dpUcd3d1tkoxjbsSHO69S3GTcighTTgN2MaYprCNeApltsW_QkeDHbN_fagn6ObTx-vzL83F5eev52cXjQOmSsNlp5iwolO9F0zppYJBDroXUlsBoDztqBik87I-TxjppJBs4LzXzgFxHE7Q-33uZk4_tz4XE0N2fhzt5NM2G93VAAma_J_UoiNSUlbJD_8kqVIEGCihKyr2qJtTzrMfzGYO0c47Q4l5FGbW5iDMPAozRJoqrO69PZzYLqPvn7b-GqrAuz0w2GTs9zlkc3NVE0SV2XGpJfwBvO6eSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770323758</pqid></control><display><type>article</type><title>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Vargeese, Anuj A ; Muralidharan, Krishnamurthi</creator><creatorcontrib>Vargeese, Anuj A ; Muralidharan, Krishnamurthi</creatorcontrib><description>Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.06.036</identifier><identifier>PMID: 21742435</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>activation energy ; ammonia ; ammonium nitrate ; Ammonium nitrates ; burning ; Catalysis ; catalysts ; catalytic activity ; Combustion ; Decomposition reactions ; Environmental Monitoring - methods ; gases ; Inhibitors ; Kinetics ; Microscopy, Electron, Transmission - methods ; Models, Statistical ; nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology - methods ; Nitrates - analysis ; oxidants ; Oxidizers ; phase transition ; Propellants ; Surface Properties ; Temperature ; Thermogravimetry - methods ; Titanium - analysis ; Titanium - chemistry ; Titanium dioxide ; water ; X-Ray Diffraction</subject><ispartof>Journal of hazardous materials, 2011-09, Vol.192 (3), p.1314-1320</ispartof><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</citedby><cites>FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21742435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargeese, Anuj A</creatorcontrib><creatorcontrib>Muralidharan, Krishnamurthi</creatorcontrib><title>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.</description><subject>activation energy</subject><subject>ammonia</subject><subject>ammonium nitrate</subject><subject>Ammonium nitrates</subject><subject>burning</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>Combustion</subject><subject>Decomposition reactions</subject><subject>Environmental Monitoring - methods</subject><subject>gases</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Models, Statistical</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nitrates - analysis</subject><subject>oxidants</subject><subject>Oxidizers</subject><subject>phase transition</subject><subject>Propellants</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Thermogravimetry - methods</subject><subject>Titanium - analysis</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>water</subject><subject>X-Ray Diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtuFDEQhi1ERIbAEQDvYNMd2-VXL6OIlxQpiyRr43G7GQ_t9tD2SJmsUK7ADXMSHM2QJaxKqvrqL5U-hN5Q0lJC5em6Xa_sXbSlZYTSlsiWgHyGFlQraABAPkcLAoQ3oDt-jF7mvCaEUCX4C3TMqOKMg1igb2eTLTb7h1-_l3NKP0LxOIZb3-PNqrbxZKeEr8Plw_09dpUcd3d1tkoxjbsSHO69S3GTcighTTgN2MaYprCNeApltsW_QkeDHbN_fagn6ObTx-vzL83F5eev52cXjQOmSsNlp5iwolO9F0zppYJBDroXUlsBoDztqBik87I-TxjppJBs4LzXzgFxHE7Q-33uZk4_tz4XE0N2fhzt5NM2G93VAAma_J_UoiNSUlbJD_8kqVIEGCihKyr2qJtTzrMfzGYO0c47Q4l5FGbW5iDMPAozRJoqrO69PZzYLqPvn7b-GqrAuz0w2GTs9zlkc3NVE0SV2XGpJfwBvO6eSg</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Vargeese, Anuj A</creator><creator>Muralidharan, Krishnamurthi</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>SOI</scope></search><sort><creationdate>20110915</creationdate><title>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</title><author>Vargeese, Anuj A ; Muralidharan, Krishnamurthi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>activation energy</topic><topic>ammonia</topic><topic>ammonium nitrate</topic><topic>Ammonium nitrates</topic><topic>burning</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>Combustion</topic><topic>Decomposition reactions</topic><topic>Environmental Monitoring - methods</topic><topic>gases</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Models, Statistical</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nitrates - analysis</topic><topic>oxidants</topic><topic>Oxidizers</topic><topic>phase transition</topic><topic>Propellants</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Thermogravimetry - methods</topic><topic>Titanium - analysis</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>water</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargeese, Anuj A</creatorcontrib><creatorcontrib>Muralidharan, Krishnamurthi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargeese, Anuj A</au><au>Muralidharan, Krishnamurthi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>192</volume><issue>3</issue><spage>1314</spage><epage>1320</epage><pages>1314-1320</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21742435</pmid><doi>10.1016/j.jhazmat.2011.06.036</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-09, Vol.192 (3), p.1314-1320
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_899156380
source ScienceDirect Freedom Collection 2022-2024
subjects activation energy
ammonia
ammonium nitrate
Ammonium nitrates
burning
Catalysis
catalysts
catalytic activity
Combustion
Decomposition reactions
Environmental Monitoring - methods
gases
Inhibitors
Kinetics
Microscopy, Electron, Transmission - methods
Models, Statistical
nanoparticles
Nanostructure
Nanostructures - chemistry
Nanotechnology - methods
Nitrates - analysis
oxidants
Oxidizers
phase transition
Propellants
Surface Properties
Temperature
Thermogravimetry - methods
Titanium - analysis
Titanium - chemistry
Titanium dioxide
water
X-Ray Diffraction
title Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatase%E2%80%93brookite%20mixed%20phase%20nano%20TiO%E2%82%82%20catalyzed%20homolytic%20decomposition%20of%20ammonium%20nitrate&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Vargeese,%20Anuj%20A&rft.date=2011-09-15&rft.volume=192&rft.issue=3&rft.spage=1314&rft.epage=1320&rft.pages=1314-1320&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2011.06.036&rft_dat=%3Cproquest_cross%3E899156380%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770323758&rft_id=info:pmid/21742435&rfr_iscdi=true