Loading…
Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate
Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near ro...
Saved in:
Published in: | Journal of hazardous materials 2011-09, Vol.192 (3), p.1314-1320 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43 |
container_end_page | 1320 |
container_issue | 3 |
container_start_page | 1314 |
container_title | Journal of hazardous materials |
container_volume | 192 |
creator | Vargeese, Anuj A Muralidharan, Krishnamurthi |
description | Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity. |
doi_str_mv | 10.1016/j.jhazmat.2011.06.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899156380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899156380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</originalsourceid><addsrcrecordid>eNqFkUtuFDEQhi1ERIbAEQDvYNMd2-VXL6OIlxQpiyRr43G7GQ_t9tD2SJmsUK7ADXMSHM2QJaxKqvrqL5U-hN5Q0lJC5em6Xa_sXbSlZYTSlsiWgHyGFlQraABAPkcLAoQ3oDt-jF7mvCaEUCX4C3TMqOKMg1igb2eTLTb7h1-_l3NKP0LxOIZb3-PNqrbxZKeEr8Plw_09dpUcd3d1tkoxjbsSHO69S3GTcighTTgN2MaYprCNeApltsW_QkeDHbN_fagn6ObTx-vzL83F5eev52cXjQOmSsNlp5iwolO9F0zppYJBDroXUlsBoDztqBik87I-TxjppJBs4LzXzgFxHE7Q-33uZk4_tz4XE0N2fhzt5NM2G93VAAma_J_UoiNSUlbJD_8kqVIEGCihKyr2qJtTzrMfzGYO0c47Q4l5FGbW5iDMPAozRJoqrO69PZzYLqPvn7b-GqrAuz0w2GTs9zlkc3NVE0SV2XGpJfwBvO6eSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770323758</pqid></control><display><type>article</type><title>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Vargeese, Anuj A ; Muralidharan, Krishnamurthi</creator><creatorcontrib>Vargeese, Anuj A ; Muralidharan, Krishnamurthi</creatorcontrib><description>Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.06.036</identifier><identifier>PMID: 21742435</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>activation energy ; ammonia ; ammonium nitrate ; Ammonium nitrates ; burning ; Catalysis ; catalysts ; catalytic activity ; Combustion ; Decomposition reactions ; Environmental Monitoring - methods ; gases ; Inhibitors ; Kinetics ; Microscopy, Electron, Transmission - methods ; Models, Statistical ; nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology - methods ; Nitrates - analysis ; oxidants ; Oxidizers ; phase transition ; Propellants ; Surface Properties ; Temperature ; Thermogravimetry - methods ; Titanium - analysis ; Titanium - chemistry ; Titanium dioxide ; water ; X-Ray Diffraction</subject><ispartof>Journal of hazardous materials, 2011-09, Vol.192 (3), p.1314-1320</ispartof><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</citedby><cites>FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21742435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargeese, Anuj A</creatorcontrib><creatorcontrib>Muralidharan, Krishnamurthi</creatorcontrib><title>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.</description><subject>activation energy</subject><subject>ammonia</subject><subject>ammonium nitrate</subject><subject>Ammonium nitrates</subject><subject>burning</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>Combustion</subject><subject>Decomposition reactions</subject><subject>Environmental Monitoring - methods</subject><subject>gases</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Models, Statistical</subject><subject>nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nitrates - analysis</subject><subject>oxidants</subject><subject>Oxidizers</subject><subject>phase transition</subject><subject>Propellants</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Thermogravimetry - methods</subject><subject>Titanium - analysis</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>water</subject><subject>X-Ray Diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtuFDEQhi1ERIbAEQDvYNMd2-VXL6OIlxQpiyRr43G7GQ_t9tD2SJmsUK7ADXMSHM2QJaxKqvrqL5U-hN5Q0lJC5em6Xa_sXbSlZYTSlsiWgHyGFlQraABAPkcLAoQ3oDt-jF7mvCaEUCX4C3TMqOKMg1igb2eTLTb7h1-_l3NKP0LxOIZb3-PNqrbxZKeEr8Plw_09dpUcd3d1tkoxjbsSHO69S3GTcighTTgN2MaYprCNeApltsW_QkeDHbN_fagn6ObTx-vzL83F5eev52cXjQOmSsNlp5iwolO9F0zppYJBDroXUlsBoDztqBik87I-TxjppJBs4LzXzgFxHE7Q-33uZk4_tz4XE0N2fhzt5NM2G93VAAma_J_UoiNSUlbJD_8kqVIEGCihKyr2qJtTzrMfzGYO0c47Q4l5FGbW5iDMPAozRJoqrO69PZzYLqPvn7b-GqrAuz0w2GTs9zlkc3NVE0SV2XGpJfwBvO6eSg</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Vargeese, Anuj A</creator><creator>Muralidharan, Krishnamurthi</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>SOI</scope></search><sort><creationdate>20110915</creationdate><title>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</title><author>Vargeese, Anuj A ; Muralidharan, Krishnamurthi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>activation energy</topic><topic>ammonia</topic><topic>ammonium nitrate</topic><topic>Ammonium nitrates</topic><topic>burning</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>Combustion</topic><topic>Decomposition reactions</topic><topic>Environmental Monitoring - methods</topic><topic>gases</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Models, Statistical</topic><topic>nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nitrates - analysis</topic><topic>oxidants</topic><topic>Oxidizers</topic><topic>phase transition</topic><topic>Propellants</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Thermogravimetry - methods</topic><topic>Titanium - analysis</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>water</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargeese, Anuj A</creatorcontrib><creatorcontrib>Muralidharan, Krishnamurthi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargeese, Anuj A</au><au>Muralidharan, Krishnamurthi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>192</volume><issue>3</issue><spage>1314</spage><epage>1320</epage><pages>1314-1320</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>Compared to the conventional ammonium perchlorate based solid rocket propellants, burning of ammonium nitrate (AN) based propellants produce environmentally innocuous combustion gases. Application of AN as propellant oxidizer is restricted due to low reactivity and low energetics besides its near room temperature polymorphic phase transition. In the present study, anatase–brookite mixed phase TiO₂ nanoparticles (∼10nm) are synthesized and used as catalyst to enhance the reactivity of the environmental friendly propellant oxidizer ammonium nitrate. The activation energy required for the decomposition reactions, computed by differential and non-linear integral isoconversional methods are used to establish the catalytic activity. Presumably, the removal of NH₃ and H₂O, known inhibitors of ammonium nitrate decomposition reaction, due to the surface reactions on active surface of TiO₂ changes the decomposition pathway and thereby the reactivity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21742435</pmid><doi>10.1016/j.jhazmat.2011.06.036</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2011-09, Vol.192 (3), p.1314-1320 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_899156380 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | activation energy ammonia ammonium nitrate Ammonium nitrates burning Catalysis catalysts catalytic activity Combustion Decomposition reactions Environmental Monitoring - methods gases Inhibitors Kinetics Microscopy, Electron, Transmission - methods Models, Statistical nanoparticles Nanostructure Nanostructures - chemistry Nanotechnology - methods Nitrates - analysis oxidants Oxidizers phase transition Propellants Surface Properties Temperature Thermogravimetry - methods Titanium - analysis Titanium - chemistry Titanium dioxide water X-Ray Diffraction |
title | Anatase–brookite mixed phase nano TiO₂ catalyzed homolytic decomposition of ammonium nitrate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatase%E2%80%93brookite%20mixed%20phase%20nano%20TiO%E2%82%82%20catalyzed%20homolytic%20decomposition%20of%20ammonium%20nitrate&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Vargeese,%20Anuj%20A&rft.date=2011-09-15&rft.volume=192&rft.issue=3&rft.spage=1314&rft.epage=1320&rft.pages=1314-1320&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2011.06.036&rft_dat=%3Cproquest_cross%3E899156380%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-469725a597de5278b73f6f8d568a5337e1915f6ce601602096562f44d8cc30c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770323758&rft_id=info:pmid/21742435&rfr_iscdi=true |