Loading…

The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels

Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-res...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2011-11, Vol.32 (33), p.8462-8473
Main Authors: Truong, My Y, Dutta, Naba K, Choudhury, Namita R, Kim, Misook, Elvin, Christopher M, Nairn, Kate M, Hill, Anita J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3
cites cdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3
container_end_page 8473
container_issue 33
container_start_page 8462
container_title Biomaterials
container_volume 32
creator Truong, My Y
Dutta, Naba K
Choudhury, Namita R
Kim, Misook
Elvin, Christopher M
Nairn, Kate M
Hill, Anita J
description Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7  cm2  s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of >180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (
doi_str_mv 10.1016/j.biomaterials.2011.07.064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899166777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961211008611</els_id><sourcerecordid>899166777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRAV3Rb-Aoq4cErwOF8OByRUKFSqxIG9W85kwnpJ4mInK63Ej--ELQj1VMmSNZr33ny8EeINyAwkVO_2Wev8aGcKzg4xUxIgk3Umq-KZ2ICudVo2snwuNhIKlTYVqHNxEeNeciwL9UKcK9CVlrrZiN_bHSXU94Rz4vtkd-yCnZ2fEn6jHwiXwYYEd9atcesGNx8TO3XJzLyDi-hpsHF2mLS0swfnwyoTKDJySkc30pq7C34mjlsbqftTxP-gIb4UZz1PQK8e_kuxvf68vfqa3n77cnP18TbFMldzqgHzElWDBFbbtqVW80yEUtd1XfYFdHUuraKy6-oSsS8qKHolEdu-0kT5pXh7kuU2fi0UZzNy4zQMdiK_RKObBqqKtZ6AVE3BOMnI9yckBh9joN7cBTfacDQgzeqS2Zv_XTKrS0bWhl1i8uuHMks7UveP-tcWBnw6AXhJdHAUTERHE1LnAjtlOu-eVufDIxlkVxza4ScdKe79EqaVAyYqI8339V7WcwGQklcM-T0u0cJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>892947730</pqid></control><display><type>article</type><title>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</title><source>ScienceDirect Freedom Collection</source><creator>Truong, My Y ; Dutta, Naba K ; Choudhury, Namita R ; Kim, Misook ; Elvin, Christopher M ; Nairn, Kate M ; Hill, Anita J</creator><creatorcontrib>Truong, My Y ; Dutta, Naba K ; Choudhury, Namita R ; Kim, Misook ; Elvin, Christopher M ; Nairn, Kate M ; Hill, Anita J</creatorcontrib><description>Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7  cm2  s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of &gt;180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (&lt;10%), the mechanical properties of rec1-resilin gels change dramatically. Rheological investigations confirm that the equilibrium-swollen crosslinked rec1-resilin hydrogel exhibits outstanding elasticity and resilience of ∼92%, which exceeds that of any other synthetic polymer and biopolymer hydrogels.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.07.064</identifier><identifier>PMID: 21868089</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Amino Acid Sequence ; Biomimetic protein ; Biopolymers ; Calorimetry, Differential Scanning ; Crystallization ; Dentistry ; Elasticity ; Hydration ; Hydrogel ; Insect Proteins - chemistry ; Kinetics ; Molecular Sequence Data ; Rec1-resilin ; Rheological properties ; Sequence Homology, Amino Acid ; Sorption isotherm ; Thermogravimetry ; Viscosity ; Water - chemistry</subject><ispartof>Biomaterials, 2011-11, Vol.32 (33), p.8462-8473</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</citedby><cites>FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21868089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, My Y</creatorcontrib><creatorcontrib>Dutta, Naba K</creatorcontrib><creatorcontrib>Choudhury, Namita R</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Elvin, Christopher M</creatorcontrib><creatorcontrib>Nairn, Kate M</creatorcontrib><creatorcontrib>Hill, Anita J</creatorcontrib><title>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7  cm2  s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of &gt;180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (&lt;10%), the mechanical properties of rec1-resilin gels change dramatically. Rheological investigations confirm that the equilibrium-swollen crosslinked rec1-resilin hydrogel exhibits outstanding elasticity and resilience of ∼92%, which exceeds that of any other synthetic polymer and biopolymer hydrogels.</description><subject>Advanced Basic Science</subject><subject>Amino Acid Sequence</subject><subject>Biomimetic protein</subject><subject>Biopolymers</subject><subject>Calorimetry, Differential Scanning</subject><subject>Crystallization</subject><subject>Dentistry</subject><subject>Elasticity</subject><subject>Hydration</subject><subject>Hydrogel</subject><subject>Insect Proteins - chemistry</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Rec1-resilin</subject><subject>Rheological properties</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sorption isotherm</subject><subject>Thermogravimetry</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUk1v1DAQtRAV3Rb-Aoq4cErwOF8OByRUKFSqxIG9W85kwnpJ4mInK63Ej--ELQj1VMmSNZr33ny8EeINyAwkVO_2Wev8aGcKzg4xUxIgk3Umq-KZ2ICudVo2snwuNhIKlTYVqHNxEeNeciwL9UKcK9CVlrrZiN_bHSXU94Rz4vtkd-yCnZ2fEn6jHwiXwYYEd9atcesGNx8TO3XJzLyDi-hpsHF2mLS0swfnwyoTKDJySkc30pq7C34mjlsbqftTxP-gIb4UZz1PQK8e_kuxvf68vfqa3n77cnP18TbFMldzqgHzElWDBFbbtqVW80yEUtd1XfYFdHUuraKy6-oSsS8qKHolEdu-0kT5pXh7kuU2fi0UZzNy4zQMdiK_RKObBqqKtZ6AVE3BOMnI9yckBh9joN7cBTfacDQgzeqS2Zv_XTKrS0bWhl1i8uuHMks7UveP-tcWBnw6AXhJdHAUTERHE1LnAjtlOu-eVufDIxlkVxza4ScdKe79EqaVAyYqI8339V7WcwGQklcM-T0u0cJk</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Truong, My Y</creator><creator>Dutta, Naba K</creator><creator>Choudhury, Namita R</creator><creator>Kim, Misook</creator><creator>Elvin, Christopher M</creator><creator>Nairn, Kate M</creator><creator>Hill, Anita J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111101</creationdate><title>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</title><author>Truong, My Y ; Dutta, Naba K ; Choudhury, Namita R ; Kim, Misook ; Elvin, Christopher M ; Nairn, Kate M ; Hill, Anita J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Amino Acid Sequence</topic><topic>Biomimetic protein</topic><topic>Biopolymers</topic><topic>Calorimetry, Differential Scanning</topic><topic>Crystallization</topic><topic>Dentistry</topic><topic>Elasticity</topic><topic>Hydration</topic><topic>Hydrogel</topic><topic>Insect Proteins - chemistry</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Rec1-resilin</topic><topic>Rheological properties</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sorption isotherm</topic><topic>Thermogravimetry</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, My Y</creatorcontrib><creatorcontrib>Dutta, Naba K</creatorcontrib><creatorcontrib>Choudhury, Namita R</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Elvin, Christopher M</creatorcontrib><creatorcontrib>Nairn, Kate M</creatorcontrib><creatorcontrib>Hill, Anita J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, My Y</au><au>Dutta, Naba K</au><au>Choudhury, Namita R</au><au>Kim, Misook</au><au>Elvin, Christopher M</au><au>Nairn, Kate M</au><au>Hill, Anita J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>32</volume><issue>33</issue><spage>8462</spage><epage>8473</epage><pages>8462-8473</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7  cm2  s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of &gt;180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (&lt;10%), the mechanical properties of rec1-resilin gels change dramatically. Rheological investigations confirm that the equilibrium-swollen crosslinked rec1-resilin hydrogel exhibits outstanding elasticity and resilience of ∼92%, which exceeds that of any other synthetic polymer and biopolymer hydrogels.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21868089</pmid><doi>10.1016/j.biomaterials.2011.07.064</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-11, Vol.32 (33), p.8462-8473
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_899166777
source ScienceDirect Freedom Collection
subjects Advanced Basic Science
Amino Acid Sequence
Biomimetic protein
Biopolymers
Calorimetry, Differential Scanning
Crystallization
Dentistry
Elasticity
Hydration
Hydrogel
Insect Proteins - chemistry
Kinetics
Molecular Sequence Data
Rec1-resilin
Rheological properties
Sequence Homology, Amino Acid
Sorption isotherm
Thermogravimetry
Viscosity
Water - chemistry
title The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20hydration%20on%20molecular%20chain%20mobility%20and%20the%20viscoelastic%20behavior%20of%20resilin-mimetic%20protein-based%20hydrogels&rft.jtitle=Biomaterials&rft.au=Truong,%20My%20Y&rft.date=2011-11-01&rft.volume=32&rft.issue=33&rft.spage=8462&rft.epage=8473&rft.pages=8462-8473&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.07.064&rft_dat=%3Cproquest_cross%3E899166777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=892947730&rft_id=info:pmid/21868089&rfr_iscdi=true