Loading…
The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels
Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-res...
Saved in:
Published in: | Biomaterials 2011-11, Vol.32 (33), p.8462-8473 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3 |
container_end_page | 8473 |
container_issue | 33 |
container_start_page | 8462 |
container_title | Biomaterials |
container_volume | 32 |
creator | Truong, My Y Dutta, Naba K Choudhury, Namita R Kim, Misook Elvin, Christopher M Nairn, Kate M Hill, Anita J |
description | Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7 cm2 s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of >180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration ( |
doi_str_mv | 10.1016/j.biomaterials.2011.07.064 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899166777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961211008611</els_id><sourcerecordid>899166777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRAV3Rb-Aoq4cErwOF8OByRUKFSqxIG9W85kwnpJ4mInK63Ej--ELQj1VMmSNZr33ny8EeINyAwkVO_2Wev8aGcKzg4xUxIgk3Umq-KZ2ICudVo2snwuNhIKlTYVqHNxEeNeciwL9UKcK9CVlrrZiN_bHSXU94Rz4vtkd-yCnZ2fEn6jHwiXwYYEd9atcesGNx8TO3XJzLyDi-hpsHF2mLS0swfnwyoTKDJySkc30pq7C34mjlsbqftTxP-gIb4UZz1PQK8e_kuxvf68vfqa3n77cnP18TbFMldzqgHzElWDBFbbtqVW80yEUtd1XfYFdHUuraKy6-oSsS8qKHolEdu-0kT5pXh7kuU2fi0UZzNy4zQMdiK_RKObBqqKtZ6AVE3BOMnI9yckBh9joN7cBTfacDQgzeqS2Zv_XTKrS0bWhl1i8uuHMks7UveP-tcWBnw6AXhJdHAUTERHE1LnAjtlOu-eVufDIxlkVxza4ScdKe79EqaVAyYqI8339V7WcwGQklcM-T0u0cJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>892947730</pqid></control><display><type>article</type><title>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</title><source>ScienceDirect Freedom Collection</source><creator>Truong, My Y ; Dutta, Naba K ; Choudhury, Namita R ; Kim, Misook ; Elvin, Christopher M ; Nairn, Kate M ; Hill, Anita J</creator><creatorcontrib>Truong, My Y ; Dutta, Naba K ; Choudhury, Namita R ; Kim, Misook ; Elvin, Christopher M ; Nairn, Kate M ; Hill, Anita J</creatorcontrib><description>Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7 cm2 s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of >180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (<10%), the mechanical properties of rec1-resilin gels change dramatically. Rheological investigations confirm that the equilibrium-swollen crosslinked rec1-resilin hydrogel exhibits outstanding elasticity and resilience of ∼92%, which exceeds that of any other synthetic polymer and biopolymer hydrogels.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.07.064</identifier><identifier>PMID: 21868089</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Amino Acid Sequence ; Biomimetic protein ; Biopolymers ; Calorimetry, Differential Scanning ; Crystallization ; Dentistry ; Elasticity ; Hydration ; Hydrogel ; Insect Proteins - chemistry ; Kinetics ; Molecular Sequence Data ; Rec1-resilin ; Rheological properties ; Sequence Homology, Amino Acid ; Sorption isotherm ; Thermogravimetry ; Viscosity ; Water - chemistry</subject><ispartof>Biomaterials, 2011-11, Vol.32 (33), p.8462-8473</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</citedby><cites>FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21868089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, My Y</creatorcontrib><creatorcontrib>Dutta, Naba K</creatorcontrib><creatorcontrib>Choudhury, Namita R</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Elvin, Christopher M</creatorcontrib><creatorcontrib>Nairn, Kate M</creatorcontrib><creatorcontrib>Hill, Anita J</creatorcontrib><title>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7 cm2 s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of >180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (<10%), the mechanical properties of rec1-resilin gels change dramatically. Rheological investigations confirm that the equilibrium-swollen crosslinked rec1-resilin hydrogel exhibits outstanding elasticity and resilience of ∼92%, which exceeds that of any other synthetic polymer and biopolymer hydrogels.</description><subject>Advanced Basic Science</subject><subject>Amino Acid Sequence</subject><subject>Biomimetic protein</subject><subject>Biopolymers</subject><subject>Calorimetry, Differential Scanning</subject><subject>Crystallization</subject><subject>Dentistry</subject><subject>Elasticity</subject><subject>Hydration</subject><subject>Hydrogel</subject><subject>Insect Proteins - chemistry</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Rec1-resilin</subject><subject>Rheological properties</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sorption isotherm</subject><subject>Thermogravimetry</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUk1v1DAQtRAV3Rb-Aoq4cErwOF8OByRUKFSqxIG9W85kwnpJ4mInK63Ej--ELQj1VMmSNZr33ny8EeINyAwkVO_2Wev8aGcKzg4xUxIgk3Umq-KZ2ICudVo2snwuNhIKlTYVqHNxEeNeciwL9UKcK9CVlrrZiN_bHSXU94Rz4vtkd-yCnZ2fEn6jHwiXwYYEd9atcesGNx8TO3XJzLyDi-hpsHF2mLS0swfnwyoTKDJySkc30pq7C34mjlsbqftTxP-gIb4UZz1PQK8e_kuxvf68vfqa3n77cnP18TbFMldzqgHzElWDBFbbtqVW80yEUtd1XfYFdHUuraKy6-oSsS8qKHolEdu-0kT5pXh7kuU2fi0UZzNy4zQMdiK_RKObBqqKtZ6AVE3BOMnI9yckBh9joN7cBTfacDQgzeqS2Zv_XTKrS0bWhl1i8uuHMks7UveP-tcWBnw6AXhJdHAUTERHE1LnAjtlOu-eVufDIxlkVxza4ScdKe79EqaVAyYqI8339V7WcwGQklcM-T0u0cJk</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Truong, My Y</creator><creator>Dutta, Naba K</creator><creator>Choudhury, Namita R</creator><creator>Kim, Misook</creator><creator>Elvin, Christopher M</creator><creator>Nairn, Kate M</creator><creator>Hill, Anita J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111101</creationdate><title>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</title><author>Truong, My Y ; Dutta, Naba K ; Choudhury, Namita R ; Kim, Misook ; Elvin, Christopher M ; Nairn, Kate M ; Hill, Anita J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Amino Acid Sequence</topic><topic>Biomimetic protein</topic><topic>Biopolymers</topic><topic>Calorimetry, Differential Scanning</topic><topic>Crystallization</topic><topic>Dentistry</topic><topic>Elasticity</topic><topic>Hydration</topic><topic>Hydrogel</topic><topic>Insect Proteins - chemistry</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Rec1-resilin</topic><topic>Rheological properties</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sorption isotherm</topic><topic>Thermogravimetry</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, My Y</creatorcontrib><creatorcontrib>Dutta, Naba K</creatorcontrib><creatorcontrib>Choudhury, Namita R</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Elvin, Christopher M</creatorcontrib><creatorcontrib>Nairn, Kate M</creatorcontrib><creatorcontrib>Hill, Anita J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, My Y</au><au>Dutta, Naba K</au><au>Choudhury, Namita R</au><au>Kim, Misook</au><au>Elvin, Christopher M</au><au>Nairn, Kate M</au><au>Hill, Anita J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>32</volume><issue>33</issue><spage>8462</spage><epage>8473</epage><pages>8462-8473</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The outstanding rubber-like elasticity of resilin and resilin-mimetic proteins depends critically on the level of hydration. In this investigation, water vapor sorption and the role of hydration on the molecular chain dynamics and viscoelastic properties of resilin-mimetic protein, rec1-resilin is investigated in detail. The dynamic and equilibrium swelling behavior of the crosslinked protein hydrogels with different crosslink density are reported under various controlled environments. We propose three different stages of hydration; involving non-crystallizable water, followed by condensation or clustering of water around the already hydrated sites, and finally crystallizable water. The kinetics of water sorption for this engineering protein is observed to be comparable to hydrophilic polymers with a diffusion coefficient in the range of 10−7 cm2 s−1 . From the comparison between the absorption and desorption isotherms at a constant water activity, it has been observed that rec1-resilin exhibits sorption hysteresis only for the tightly bound water. Investigation of molecular mobility using differential scanning calorimetry, indicates that dehydrated crosslinked rec1-resilin is brittle with a glass transition temperature ( Tg ) of >180 °C, which dramatically decreases with increasing hydration; and above a critical level of hydration rec1-resilin exhibits rubber-like elasticity. Nanoindentation studies show that even with little hydration (<10%), the mechanical properties of rec1-resilin gels change dramatically. Rheological investigations confirm that the equilibrium-swollen crosslinked rec1-resilin hydrogel exhibits outstanding elasticity and resilience of ∼92%, which exceeds that of any other synthetic polymer and biopolymer hydrogels.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21868089</pmid><doi>10.1016/j.biomaterials.2011.07.064</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-11, Vol.32 (33), p.8462-8473 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_899166777 |
source | ScienceDirect Freedom Collection |
subjects | Advanced Basic Science Amino Acid Sequence Biomimetic protein Biopolymers Calorimetry, Differential Scanning Crystallization Dentistry Elasticity Hydration Hydrogel Insect Proteins - chemistry Kinetics Molecular Sequence Data Rec1-resilin Rheological properties Sequence Homology, Amino Acid Sorption isotherm Thermogravimetry Viscosity Water - chemistry |
title | The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20hydration%20on%20molecular%20chain%20mobility%20and%20the%20viscoelastic%20behavior%20of%20resilin-mimetic%20protein-based%20hydrogels&rft.jtitle=Biomaterials&rft.au=Truong,%20My%20Y&rft.date=2011-11-01&rft.volume=32&rft.issue=33&rft.spage=8462&rft.epage=8473&rft.pages=8462-8473&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.07.064&rft_dat=%3Cproquest_cross%3E899166777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-81c35c29ce1a8abbeb8612ec087775f41d730a2e5dd75ccf4614f20ccbf68ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=892947730&rft_id=info:pmid/21868089&rfr_iscdi=true |