Loading…

Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct

Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in ze...

Full description

Saved in:
Bibliographic Details
Published in:Transgenic research 2011-06, Vol.20 (3), p.557-567
Main Authors: Ishtiaq Ahmed, A. S, Xiong, Feng, Pang, Shao-Chen, He, Mu-Dan, Waters, Michael J, Zhu, Zuo-Yan, Sun, Yong-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3
cites cdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3
container_end_page 567
container_issue 3
container_start_page 557
container_title Transgenic research
container_volume 20
creator Ishtiaq Ahmed, A. S
Xiong, Feng
Pang, Shao-Chen
He, Mu-Dan
Waters, Michael J
Zhu, Zuo-Yan
Sun, Yong-Hua
description Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.
doi_str_mv 10.1007/s11248-010-9439-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899168234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866049925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhAbhAhIQ4BcZ2nNjHqiotUiUkoOdo4jhbV1l7sZOi7TPw0Mwq21biABeP7Pn-f6z5GXvN4SMHaD5lzkWlS-BQmkqa0jxhK64aWRpZ66dsBaYWpdbcHLEXOd8AgaDlc3YkQIMk6Yr9PrGTv8XJx1DEoTi_KLJfBxx9WBcYenoofejd1tERpiJPfjOPD_g6xV_TdeFDcee6hIPP10W3o_uUYj_bewwLGwNJp5lmuXFX4DLU7f2_Lc1E-Ev2bMAxu1eHesyuPp_9OL0oL7-efzk9uSxtpeqpROSgmkGg6fqhagR0otFKD0PdOUSpOmkaJWRlG6tdr3gFPTi0zijRdVb08ph9WHy3Kf6cXZ7ajc_WjSMGF-fcamN4rcnh_2RdQ2WMUES--4u8iXOiTRLUKFVBBYIgvkA2xZyTG9pt8htMu5ZDu4-0XSJtKal2H2lrSPPmYDx3G9c_KO4zJOD9AcBscRwSBuvzI1cRqUxNnFi4TK2wdunxh_-a_nYRDRhbXCcyvvougHYKUFPl8g_dScPz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875540402</pqid></control><display><type>article</type><title>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</title><source>Springer Link</source><creator>Ishtiaq Ahmed, A. S ; Xiong, Feng ; Pang, Shao-Chen ; He, Mu-Dan ; Waters, Michael J ; Zhu, Zuo-Yan ; Sun, Yong-Hua</creator><creatorcontrib>Ishtiaq Ahmed, A. S ; Xiong, Feng ; Pang, Shao-Chen ; He, Mu-Dan ; Waters, Michael J ; Zhu, Zuo-Yan ; Sun, Yong-Hua</creatorcontrib><description>Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-010-9439-9</identifier><identifier>PMID: 20803248</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animals ; Animals, Genetically Modified - embryology ; Animals, Genetically Modified - genetics ; Animals, Genetically Modified - growth &amp; development ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotechnology ; Danio rerio ; Dimerization ; fish ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; gene overexpression ; gene transfer ; Gene Transfer Techniques ; Genetic Engineering ; Genetic technics ; Growth Hormone - genetics ; Growth Hormone - metabolism ; insulin-like growth factor I ; Life Sciences ; Methods. Procedures. Technologies ; Molecular Medicine ; Original Paper ; Plant Genetics and Genomics ; protein products ; Receptors, Somatotropin - genetics ; Receptors, Somatotropin - metabolism ; Signal Transduction ; somatotropin ; Transcriptional Activation ; transgenic animals ; Transgenic animals and transgenic plants ; Transgenics ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - growth &amp; development</subject><ispartof>Transgenic research, 2011-06, Vol.20 (3), p.557-567</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</citedby><cites>FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24208596$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20803248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishtiaq Ahmed, A. S</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Pang, Shao-Chen</creatorcontrib><creatorcontrib>He, Mu-Dan</creatorcontrib><creatorcontrib>Waters, Michael J</creatorcontrib><creatorcontrib>Zhu, Zuo-Yan</creatorcontrib><creatorcontrib>Sun, Yong-Hua</creatorcontrib><title>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Animals, Genetically Modified - embryology</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Animals, Genetically Modified - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotechnology</subject><subject>Danio rerio</subject><subject>Dimerization</subject><subject>fish</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>gene overexpression</subject><subject>gene transfer</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Engineering</subject><subject>Genetic technics</subject><subject>Growth Hormone - genetics</subject><subject>Growth Hormone - metabolism</subject><subject>insulin-like growth factor I</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Plant Genetics and Genomics</subject><subject>protein products</subject><subject>Receptors, Somatotropin - genetics</subject><subject>Receptors, Somatotropin - metabolism</subject><subject>Signal Transduction</subject><subject>somatotropin</subject><subject>Transcriptional Activation</subject><subject>transgenic animals</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenics</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth &amp; development</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhAbhAhIQ4BcZ2nNjHqiotUiUkoOdo4jhbV1l7sZOi7TPw0Mwq21biABeP7Pn-f6z5GXvN4SMHaD5lzkWlS-BQmkqa0jxhK64aWRpZ66dsBaYWpdbcHLEXOd8AgaDlc3YkQIMk6Yr9PrGTv8XJx1DEoTi_KLJfBxx9WBcYenoofejd1tERpiJPfjOPD_g6xV_TdeFDcee6hIPP10W3o_uUYj_bewwLGwNJp5lmuXFX4DLU7f2_Lc1E-Ev2bMAxu1eHesyuPp_9OL0oL7-efzk9uSxtpeqpROSgmkGg6fqhagR0otFKD0PdOUSpOmkaJWRlG6tdr3gFPTi0zijRdVb08ph9WHy3Kf6cXZ7ajc_WjSMGF-fcamN4rcnh_2RdQ2WMUES--4u8iXOiTRLUKFVBBYIgvkA2xZyTG9pt8htMu5ZDu4-0XSJtKal2H2lrSPPmYDx3G9c_KO4zJOD9AcBscRwSBuvzI1cRqUxNnFi4TK2wdunxh_-a_nYRDRhbXCcyvvougHYKUFPl8g_dScPz</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Ishtiaq Ahmed, A. S</creator><creator>Xiong, Feng</creator><creator>Pang, Shao-Chen</creator><creator>He, Mu-Dan</creator><creator>Waters, Michael J</creator><creator>Zhu, Zuo-Yan</creator><creator>Sun, Yong-Hua</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20110601</creationdate><title>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</title><author>Ishtiaq Ahmed, A. S ; Xiong, Feng ; Pang, Shao-Chen ; He, Mu-Dan ; Waters, Michael J ; Zhu, Zuo-Yan ; Sun, Yong-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Animals, Genetically Modified - embryology</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Animals, Genetically Modified - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotechnology</topic><topic>Danio rerio</topic><topic>Dimerization</topic><topic>fish</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>gene overexpression</topic><topic>gene transfer</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Engineering</topic><topic>Genetic technics</topic><topic>Growth Hormone - genetics</topic><topic>Growth Hormone - metabolism</topic><topic>insulin-like growth factor I</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Plant Genetics and Genomics</topic><topic>protein products</topic><topic>Receptors, Somatotropin - genetics</topic><topic>Receptors, Somatotropin - metabolism</topic><topic>Signal Transduction</topic><topic>somatotropin</topic><topic>Transcriptional Activation</topic><topic>transgenic animals</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenics</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishtiaq Ahmed, A. S</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Pang, Shao-Chen</creatorcontrib><creatorcontrib>He, Mu-Dan</creatorcontrib><creatorcontrib>Waters, Michael J</creatorcontrib><creatorcontrib>Zhu, Zuo-Yan</creatorcontrib><creatorcontrib>Sun, Yong-Hua</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishtiaq Ahmed, A. S</au><au>Xiong, Feng</au><au>Pang, Shao-Chen</au><au>He, Mu-Dan</au><au>Waters, Michael J</au><au>Zhu, Zuo-Yan</au><au>Sun, Yong-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>20</volume><issue>3</issue><spage>557</spage><epage>567</epage><pages>557-567</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>20803248</pmid><doi>10.1007/s11248-010-9439-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2011-06, Vol.20 (3), p.557-567
issn 0962-8819
1573-9368
language eng
recordid cdi_proquest_miscellaneous_899168234
source Springer Link
subjects Animal Genetics and Genomics
Animals
Animals, Genetically Modified - embryology
Animals, Genetically Modified - genetics
Animals, Genetically Modified - growth & development
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biotechnology
Danio rerio
Dimerization
fish
Freshwater
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
gene overexpression
gene transfer
Gene Transfer Techniques
Genetic Engineering
Genetic technics
Growth Hormone - genetics
Growth Hormone - metabolism
insulin-like growth factor I
Life Sciences
Methods. Procedures. Technologies
Molecular Medicine
Original Paper
Plant Genetics and Genomics
protein products
Receptors, Somatotropin - genetics
Receptors, Somatotropin - metabolism
Signal Transduction
somatotropin
Transcriptional Activation
transgenic animals
Transgenic animals and transgenic plants
Transgenics
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - growth & development
title Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20GH%20signaling%20and%20GH-independent%20stimulation%20of%20growth%20in%20zebrafish%20by%20introduction%20of%20a%20constitutively%20activated%20GHR%20construct&rft.jtitle=Transgenic%20research&rft.au=Ishtiaq%20Ahmed,%20A.%20S&rft.date=2011-06-01&rft.volume=20&rft.issue=3&rft.spage=557&rft.epage=567&rft.pages=557-567&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-010-9439-9&rft_dat=%3Cproquest_cross%3E866049925%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875540402&rft_id=info:pmid/20803248&rfr_iscdi=true