Loading…
Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct
Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in ze...
Saved in:
Published in: | Transgenic research 2011-06, Vol.20 (3), p.557-567 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3 |
container_end_page | 567 |
container_issue | 3 |
container_start_page | 557 |
container_title | Transgenic research |
container_volume | 20 |
creator | Ishtiaq Ahmed, A. S Xiong, Feng Pang, Shao-Chen He, Mu-Dan Waters, Michael J Zhu, Zuo-Yan Sun, Yong-Hua |
description | Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design. |
doi_str_mv | 10.1007/s11248-010-9439-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899168234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866049925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhAbhAhIQ4BcZ2nNjHqiotUiUkoOdo4jhbV1l7sZOi7TPw0Mwq21biABeP7Pn-f6z5GXvN4SMHaD5lzkWlS-BQmkqa0jxhK64aWRpZ66dsBaYWpdbcHLEXOd8AgaDlc3YkQIMk6Yr9PrGTv8XJx1DEoTi_KLJfBxx9WBcYenoofejd1tERpiJPfjOPD_g6xV_TdeFDcee6hIPP10W3o_uUYj_bewwLGwNJp5lmuXFX4DLU7f2_Lc1E-Ev2bMAxu1eHesyuPp_9OL0oL7-efzk9uSxtpeqpROSgmkGg6fqhagR0otFKD0PdOUSpOmkaJWRlG6tdr3gFPTi0zijRdVb08ph9WHy3Kf6cXZ7ajc_WjSMGF-fcamN4rcnh_2RdQ2WMUES--4u8iXOiTRLUKFVBBYIgvkA2xZyTG9pt8htMu5ZDu4-0XSJtKal2H2lrSPPmYDx3G9c_KO4zJOD9AcBscRwSBuvzI1cRqUxNnFi4TK2wdunxh_-a_nYRDRhbXCcyvvougHYKUFPl8g_dScPz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875540402</pqid></control><display><type>article</type><title>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</title><source>Springer Link</source><creator>Ishtiaq Ahmed, A. S ; Xiong, Feng ; Pang, Shao-Chen ; He, Mu-Dan ; Waters, Michael J ; Zhu, Zuo-Yan ; Sun, Yong-Hua</creator><creatorcontrib>Ishtiaq Ahmed, A. S ; Xiong, Feng ; Pang, Shao-Chen ; He, Mu-Dan ; Waters, Michael J ; Zhu, Zuo-Yan ; Sun, Yong-Hua</creatorcontrib><description>Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-010-9439-9</identifier><identifier>PMID: 20803248</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animals ; Animals, Genetically Modified - embryology ; Animals, Genetically Modified - genetics ; Animals, Genetically Modified - growth & development ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotechnology ; Danio rerio ; Dimerization ; fish ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; gene overexpression ; gene transfer ; Gene Transfer Techniques ; Genetic Engineering ; Genetic technics ; Growth Hormone - genetics ; Growth Hormone - metabolism ; insulin-like growth factor I ; Life Sciences ; Methods. Procedures. Technologies ; Molecular Medicine ; Original Paper ; Plant Genetics and Genomics ; protein products ; Receptors, Somatotropin - genetics ; Receptors, Somatotropin - metabolism ; Signal Transduction ; somatotropin ; Transcriptional Activation ; transgenic animals ; Transgenic animals and transgenic plants ; Transgenics ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - growth & development</subject><ispartof>Transgenic research, 2011-06, Vol.20 (3), p.557-567</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</citedby><cites>FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24208596$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20803248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishtiaq Ahmed, A. S</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Pang, Shao-Chen</creatorcontrib><creatorcontrib>He, Mu-Dan</creatorcontrib><creatorcontrib>Waters, Michael J</creatorcontrib><creatorcontrib>Zhu, Zuo-Yan</creatorcontrib><creatorcontrib>Sun, Yong-Hua</creatorcontrib><title>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Animals, Genetically Modified - embryology</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Animals, Genetically Modified - growth & development</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotechnology</subject><subject>Danio rerio</subject><subject>Dimerization</subject><subject>fish</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>gene overexpression</subject><subject>gene transfer</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Engineering</subject><subject>Genetic technics</subject><subject>Growth Hormone - genetics</subject><subject>Growth Hormone - metabolism</subject><subject>insulin-like growth factor I</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Plant Genetics and Genomics</subject><subject>protein products</subject><subject>Receptors, Somatotropin - genetics</subject><subject>Receptors, Somatotropin - metabolism</subject><subject>Signal Transduction</subject><subject>somatotropin</subject><subject>Transcriptional Activation</subject><subject>transgenic animals</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenics</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth & development</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhAbhAhIQ4BcZ2nNjHqiotUiUkoOdo4jhbV1l7sZOi7TPw0Mwq21biABeP7Pn-f6z5GXvN4SMHaD5lzkWlS-BQmkqa0jxhK64aWRpZ66dsBaYWpdbcHLEXOd8AgaDlc3YkQIMk6Yr9PrGTv8XJx1DEoTi_KLJfBxx9WBcYenoofejd1tERpiJPfjOPD_g6xV_TdeFDcee6hIPP10W3o_uUYj_bewwLGwNJp5lmuXFX4DLU7f2_Lc1E-Ev2bMAxu1eHesyuPp_9OL0oL7-efzk9uSxtpeqpROSgmkGg6fqhagR0otFKD0PdOUSpOmkaJWRlG6tdr3gFPTi0zijRdVb08ph9WHy3Kf6cXZ7ajc_WjSMGF-fcamN4rcnh_2RdQ2WMUES--4u8iXOiTRLUKFVBBYIgvkA2xZyTG9pt8htMu5ZDu4-0XSJtKal2H2lrSPPmYDx3G9c_KO4zJOD9AcBscRwSBuvzI1cRqUxNnFi4TK2wdunxh_-a_nYRDRhbXCcyvvougHYKUFPl8g_dScPz</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Ishtiaq Ahmed, A. S</creator><creator>Xiong, Feng</creator><creator>Pang, Shao-Chen</creator><creator>He, Mu-Dan</creator><creator>Waters, Michael J</creator><creator>Zhu, Zuo-Yan</creator><creator>Sun, Yong-Hua</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20110601</creationdate><title>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</title><author>Ishtiaq Ahmed, A. S ; Xiong, Feng ; Pang, Shao-Chen ; He, Mu-Dan ; Waters, Michael J ; Zhu, Zuo-Yan ; Sun, Yong-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Animals, Genetically Modified - embryology</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Animals, Genetically Modified - growth & development</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotechnology</topic><topic>Danio rerio</topic><topic>Dimerization</topic><topic>fish</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>gene overexpression</topic><topic>gene transfer</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Engineering</topic><topic>Genetic technics</topic><topic>Growth Hormone - genetics</topic><topic>Growth Hormone - metabolism</topic><topic>insulin-like growth factor I</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Plant Genetics and Genomics</topic><topic>protein products</topic><topic>Receptors, Somatotropin - genetics</topic><topic>Receptors, Somatotropin - metabolism</topic><topic>Signal Transduction</topic><topic>somatotropin</topic><topic>Transcriptional Activation</topic><topic>transgenic animals</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenics</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishtiaq Ahmed, A. S</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Pang, Shao-Chen</creatorcontrib><creatorcontrib>He, Mu-Dan</creatorcontrib><creatorcontrib>Waters, Michael J</creatorcontrib><creatorcontrib>Zhu, Zuo-Yan</creatorcontrib><creatorcontrib>Sun, Yong-Hua</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishtiaq Ahmed, A. S</au><au>Xiong, Feng</au><au>Pang, Shao-Chen</au><au>He, Mu-Dan</au><au>Waters, Michael J</au><au>Zhu, Zuo-Yan</au><au>Sun, Yong-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>20</volume><issue>3</issue><spage>557</spage><epage>567</epage><pages>557-567</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Growth hormone (GH) gene transfer can markedly increase growth in transgenic fish. In the present study we have developed a transcriptional assay to evaluate GH-signal activation (GHSA) in zebrafish embryos. By analyzing the transcription of c-fos and igf1, and the promoter activity of spi2.1, in zebrafish embryos injected with different constructs, we found that overexpression of either GH or growth hormone receptor (GHR) resulted in GHSA, while a synergetic overexpression of GH and GHR gave greater activation. Conversely, overexpression of a C-terminal truncated dominant-negative GHR (ΔC-GHR) efficiently blocked GHSA epistatic to GH overexpression, demonstrating the requirement for a full GHR homodimer in signaling. In view of the importance of signal-competent GHR dimerization by extracellular GH, we introduced into zebrafish embryos a constitutively activated GHR (CA-GHR) construct, which protein products constitutively dimerize the GHR productively by Jun-zippers to activate downstream signaling in vitro. Importantly, overexpression of CA-GHR led to markedly higher level of GHSA than the synergetic overexpression of GH and GHR. CA-GHR transgenic zebrafish were then studied in a growth trial. The transgenic zebrafish showed higher growth rate than the control fish, which was not achievable by GH transgenesis in these zebrafish. Our study demonstrates GH-independent growth by CA-GHR in vivo which bypasses normal IGF-1 feedback control of GH secretion. This provides a novel means of producing growth enhanced transgenic animals based on molecular protein design.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>20803248</pmid><doi>10.1007/s11248-010-9439-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8819 |
ispartof | Transgenic research, 2011-06, Vol.20 (3), p.557-567 |
issn | 0962-8819 1573-9368 |
language | eng |
recordid | cdi_proquest_miscellaneous_899168234 |
source | Springer Link |
subjects | Animal Genetics and Genomics Animals Animals, Genetically Modified - embryology Animals, Genetically Modified - genetics Animals, Genetically Modified - growth & development Biological and medical sciences Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biotechnology Danio rerio Dimerization fish Freshwater Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Developmental gene overexpression gene transfer Gene Transfer Techniques Genetic Engineering Genetic technics Growth Hormone - genetics Growth Hormone - metabolism insulin-like growth factor I Life Sciences Methods. Procedures. Technologies Molecular Medicine Original Paper Plant Genetics and Genomics protein products Receptors, Somatotropin - genetics Receptors, Somatotropin - metabolism Signal Transduction somatotropin Transcriptional Activation transgenic animals Transgenic animals and transgenic plants Transgenics Zebrafish - embryology Zebrafish - genetics Zebrafish - growth & development |
title | Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20GH%20signaling%20and%20GH-independent%20stimulation%20of%20growth%20in%20zebrafish%20by%20introduction%20of%20a%20constitutively%20activated%20GHR%20construct&rft.jtitle=Transgenic%20research&rft.au=Ishtiaq%20Ahmed,%20A.%20S&rft.date=2011-06-01&rft.volume=20&rft.issue=3&rft.spage=557&rft.epage=567&rft.pages=557-567&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-010-9439-9&rft_dat=%3Cproquest_cross%3E866049925%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-aa1057f2a9bdf4720b27858ff6beaa35b3975234c7c8ed5140d0eace952bbc2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875540402&rft_id=info:pmid/20803248&rfr_iscdi=true |