Loading…

Computational design and structure–property relationship studies on heptazines

This study aimed to design novel nitrogen-rich heptazine derivatives as high energy density materials (HEDM) by exploiting systematic structure–property relationships. Molecular structures with diverse energetic substituents at varying positions in the basic heptazine ring were designed. Density fun...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2011-11, Vol.17 (11), p.2927-2937
Main Authors: Ghule, Vikas D., Sarangapani, Radhakrishnan, Jadhav, Pandurang M., Pandey, Raj Kishore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to design novel nitrogen-rich heptazine derivatives as high energy density materials (HEDM) by exploiting systematic structure–property relationships. Molecular structures with diverse energetic substituents at varying positions in the basic heptazine ring were designed. Density functional techniques were used for prediction of gas phase heat of formation by employing an isodesmic approach, while crystal density was assessed by packing calculations. The results reveal that nitro derivatives of heptazine possess a high heat of formation and further enhancement was achieved by the substitution of nitro heterocycles. The crystal packing density of the designed compounds varied from 1.8 to 2 g cm −3 , and hence, of all the designed molecules, nitro derivatives of heptazine exhibit better energetic performance characteristics in terms of detonation velocity and pressure. The calculated band gap of the designed molecules was analyzed to establish sensitivity correlations, and the results reveal that, in general, amino derivatives possess better insensitivity characteristics. The overall performance of the designed compounds was moderate, and such compounds may find potential applications in gas generators and smoke-free pyrotechnic fuels as they are rich in nitrogen content. Figure Predicted crystal structure of IDX12
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-011-0959-x