Loading…
Computational design and structure–property relationship studies on heptazines
This study aimed to design novel nitrogen-rich heptazine derivatives as high energy density materials (HEDM) by exploiting systematic structure–property relationships. Molecular structures with diverse energetic substituents at varying positions in the basic heptazine ring were designed. Density fun...
Saved in:
Published in: | Journal of molecular modeling 2011-11, Vol.17 (11), p.2927-2937 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to design novel nitrogen-rich heptazine derivatives as high energy density materials (HEDM) by exploiting systematic structure–property relationships. Molecular structures with diverse energetic substituents at varying positions in the basic heptazine ring were designed. Density functional techniques were used for prediction of gas phase heat of formation by employing an isodesmic approach, while crystal density was assessed by packing calculations. The results reveal that nitro derivatives of heptazine possess a high heat of formation and further enhancement was achieved by the substitution of nitro heterocycles. The crystal packing density of the designed compounds varied from 1.8 to 2 g cm
−3
, and hence, of all the designed molecules, nitro derivatives of heptazine exhibit better energetic performance characteristics in terms of detonation velocity and pressure. The calculated band gap of the designed molecules was analyzed to establish sensitivity correlations, and the results reveal that, in general, amino derivatives possess better insensitivity characteristics. The overall performance of the designed compounds was moderate, and such compounds may find potential applications in gas generators and smoke-free pyrotechnic fuels as they are rich in nitrogen content.
Figure
Predicted crystal structure of
IDX12 |
---|---|
ISSN: | 1610-2940 0948-5023 |
DOI: | 10.1007/s00894-011-0959-x |